T cell epitope characterization in tandemly repetitive Trypanosoma cruzi B13 protein.

[1]  L. Juliano,et al.  T-cell molecular mimicry in Chagas disease: identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. , 2005, Journal of autoimmunity.

[2]  S. Senju,et al.  Systematic Analysis of the Combinatorial Nature of Epitopes Recognized by TCR Leads to Identification of Mimicry Epitopes for Glutamic Acid Decarboxylase 65-Specific TCRs1 , 2003, The Journal of Immunology.

[3]  L. Juliano,et al.  Retro-inverso peptide analogues of Trypanosoma cruzi B13 protein epitopes fail to be recognized by human sera and peripheral blood mononuclear cells , 2001, Peptides.

[4]  C. Mady,et al.  HLA and beta-myosin heavy chain do not influence susceptibility to Chagas disease cardiomyopathy. , 2000, Microbes and infection.

[5]  A. Gruber,et al.  Trypanosoma cruzi: conformational preferences of antigenic peptides bearing the immunodominant epitope of the B13 antigen. , 1999, Experimental parasitology.

[6]  A. Siddique,et al.  Human immune responses to the highly repetitive Plasmodium falciparum antigen Pf332. , 1999, The American journal of tropical medicine and hygiene.

[7]  A. Frasch,et al.  Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood. , 1999, Blood.

[8]  L. Kuhn,et al.  The role of structure in antibody cross-reactivity between peptides and folded proteins. , 1998, Journal of molecular biology.

[9]  J. Kalil,et al.  Molecular mimicry between cardiac myosin and Trypanosoma cruzi antigen B13: identification of a B13-driven human T cell clone that recognizes cardiac myosin. , 1997, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[10]  F. Sinigaglia,et al.  Binding of malaria T cell epitopes to DR and DQ molecules in vitro correlates with immunogenicity in vivo: identification of a universal T cell epitope in the Plasmodium falciparum circumsporozoite protein. , 1997, Journal of immunology.

[11]  L Raddrizzani,et al.  Different modes of peptide interaction enable HLA-DQ and HLA-DR molecules to bind diverse peptide repertoires. , 1997, Journal of immunology.

[12]  F. Sterky,et al.  Predominance of H-2d- and H-2k-restricted T-cell epitopes in the highly repetitive Plasmodium falciparum antigen Pf332. , 1997, Molecular immunology.

[13]  L. Guilherme,et al.  Autoimmunity in Chagas' disease. Identification of cardiac myosin-B13 Trypanosoma cruzi protein crossreactive T cell clones in heart lesions of a chronic Chagas' cardiomyopathy patient. , 1996, The Journal of clinical investigation.

[14]  E. Sercarz,et al.  Antigen processing and T cell repertoires as crucial aleatory features in induction of autoimmunity. , 1996, Journal of autoimmunity.

[15]  A. Gruber,et al.  Autoimmunity in Chagas disease cardiopathy: biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma cruzi antigen. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[16]  K. Toellner,et al.  Endotoxin and lipid A stimulate proliferation of human T cells in the presence of autologous monocytes. , 1994, Journal of immunology.

[17]  M F del Guercio,et al.  Definition of a DQ3.1-specific binding motif. , 1994, Journal of immunology.

[18]  Don C. Wiley,et al.  Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide , 1994, Nature.

[19]  A. Gruber,et al.  Trypanosoma cruzi: characterization of two recombinant antigens with potential application in the diagnosis of Chagas' disease. , 1993, Experimental parasitology.

[20]  J. Burns,et al.  Characterization of responses of normal human T cells to Trypanosoma cruzi antigens. , 1993, Journal of immunology.

[21]  A. Frasch,et al.  Sequence of the gene for a Trypanosoma cruzi protein antigenic during the chronic phase of human Chagas disease. , 1992, Molecular and biochemical parasitology.

[22]  T. Theander,et al.  Recognition of Leishmania antigens by T lymphocytes from nonexposed individuals , 1992, Infection and immunity.

[23]  O. Olerup,et al.  HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. , 1992, Tissue antigens.

[24]  J. Guardiola,et al.  Identification of a CD4 binding site on the β2 domain of HLA-DR molecules , 1992, Nature.

[25]  M. Good,et al.  Promiscuous malaria peptide epitope stimulates CD45Ra T cells from peripheral blood of nonexposed donors. , 1992, Journal of immunology.

[26]  S. Buus,et al.  Complete dissection of the Hb(64-76) determinant using T helper 1, T helper 2 clones, and T cell hybridomas. , 1992, Journal of immunology.

[27]  R. Lerner,et al.  Conformational preferences of synthetic peptides derived from the immunodominant site of the circumsporozoite protein of Plasmodium falciparum by 1H NMR. , 1990, Biochemistry.

[28]  J. Donelson,et al.  Trypanosoma cruzi expresses diverse repetitive protein antigens , 1989, Infection and immunity.

[29]  R. Snow,et al.  T cell reactivity of defined peptides from a major Plasmodium falciparum vaccine candidate: the Pf155/RESA antigen. , 1988, Immunology letters.

[30]  A. Frasch,et al.  Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. , 1988, Molecular and biochemical parasitology.

[31]  Y. D. Sharma,et al.  The primary structure of a Plasmodium falciparum polypeptide related to heat shock proteins. , 1987, Molecular and biochemical parasitology.

[32]  F. Kierszenbaum Autoimmunity in Chagas' disease. , 1986, The Journal of parasitology.

[33]  R. Lerner,et al.  The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn , 1985, Nature.

[34]  J. Stewart Solid Phase Peptide Synthesis , 1984 .

[35]  E. Meyerowitz,et al.  DNA sequences, gene regulation and modular protein evolution in the Drosophila 68C glue gene cluster. , 1983, Journal of molecular biology.

[36]  D. Mosier,et al.  Lyb Antigens and their Role in B Lymphocyte Activation , 1983, Immunological reviews.

[37]  Clemencia Pinilla,et al.  Advances in the use of synthetic combinatorial chemistry: Mixture-based libraries , 2003, Nature Medicine.

[38]  D. Loftus Functional and structural issues related to epitope cross-recognition by T cells. , 1997, Critical reviews in immunology.

[39]  A. Moreno,et al.  T cell responses to repeat and non-repeat regions of the circumsporozoite protein detected in volunteers immunized with Plasmodium falciparum sporozoites. , 1992, Memorias do Instituto Oswaldo Cruz.

[40]  L. Schofield On the function of repetitive domains in protein antigens of Plasmodium and other eukaryotic parasites. , 1991, Parasitology today.

[41]  F. Sinigaglia,et al.  Selection of T cell epitopes and vaccine engineering. , 1991, Methods in enzymology.

[42]  A. Frasch,et al.  Comparison of genes encoding Trypanosoma cruzi antigens. , 1991, Parasitology today.