The Complexity of Decision Problems for Finite-Turn Multicounter Machines

Abstract We exhibit a large class of machines with polynomial time decidable containment and equivalence problems. The machines in the class accept more than the regular sets. We know of no other class (different from the finite-state acceptors) for which the containment and equivalence problems have been shown polynomially decidable. We also discuss the complexity of other decision problems.

[1]  Zvi Galil,et al.  Hierarchies of complete problems , 1976, Acta Informatica.

[2]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[5]  I. Borosh,et al.  Bounds on positive integral solutions of linear Diophantine equations , 1976 .

[6]  Sheila A. Greibach,et al.  A Polynomial Time Algorithm for Deciding the Equivalence Problem for 2-Tape Deterministic Finite State Acceptors , 1982, SIAM J. Comput..

[7]  Eitan M. Gurari,et al.  An NP-Complete Number-Theoretic Problem , 1979, JACM.

[8]  Leslie G. Valiant The Equivalence Problem for Deterministic Finite-Turn Pushdown Automata , 1974, Inf. Control..

[9]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[10]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[11]  Leslie G. Valiant,et al.  Deterministic One-Counter Automata , 1975, J. Comput. Syst. Sci..

[12]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[13]  Sheila A. Greibach,et al.  An Infinite Hierarchy of Context-Free Languages , 1969, JACM.

[14]  Leslie G. Valiant,et al.  Decision procedures for families of deterministic pushdown automata , 1973 .

[15]  Sheila A. Greibach Remarks on the Complexity of Nondeterministic Counter Languages , 1976, Theor. Comput. Sci..