Error-Control Coding for Physical-Layer Secrecy

The renewed interest for physical-layer security techniques has put forward a new role for error-control codes. In addition to ensuring reliability, carefully designed codes have been shown to provide a level of information-theoretic secrecy, by which the amount of information leaked to an adversary may be controlled. The ability to achieve information-theoretic secrecy relies on the study of alternative coding mechanisms, such as channel resolvability and privacy amplification, in which error-control codes are exploited as a means to shape the distribution of stochastic processes. This use of error-control codes, which goes much beyond that of correcting errors, creates numerous new design challenges. The objective of this paper is threefold. First, the paper aims at providing system engineers with explicit tools to build simple secrecy codes in order to stimulate interest and foster their integration in communication system prototypes. Second, it aims at providing coding and information theorists with a synthetic overview of the theoretical concepts and techniques for secrecy. Finally, it aims at highlighting the open challenges and opportunities faced for the integration of these codes in practical systems.

[1]  A. Yener,et al.  Providing secrecy when the eavesdropper channel is arbitrarily varying: A case for multiple antennas , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[2]  Alexandre J. Pierrot,et al.  LDPC-based coded cooperative jamming codes , 2012, 2012 IEEE Information Theory Workshop.

[3]  Aylin Yener,et al.  MIMO Wiretap Channels With Unknown and Varying Eavesdropper Channel States , 2014, IEEE Transactions on Information Theory.

[4]  Byung-Jae Kwak,et al.  LDPC Codes for the Gaussian Wiretap Channel , 2009, IEEE Transactions on Information Forensics and Security.

[5]  Alexander Barg,et al.  Achieving secrecy capacity of the wiretap channel and broadcast channel with a confidential component , 2015, ITW.

[6]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[7]  Yuhong Yang Elements of Information Theory (2nd ed.). Thomas M. Cover and Joy A. Thomas , 2008 .

[8]  Masahide Sasaki,et al.  Reliability and Secrecy Functions of the Wiretap Channel Under Cost Constraint , 2013, IEEE Transactions on Information Theory.

[9]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[10]  Dariush Divsalar,et al.  Capacity-approaching protograph codes , 2009, IEEE Journal on Selected Areas in Communications.

[11]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[12]  R. A. McDonald,et al.  Noiseless Coding of Correlated Information Sources , 1973 .

[13]  Mikael Skoglund,et al.  Two edge type LDPC codes for the wiretap channel , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[14]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[15]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[16]  Masahito Hayashi,et al.  General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel , 2006, IEEE Transactions on Information Theory.

[17]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[18]  Raef Bassily,et al.  Cooperative Security at the Physical Layer: A Summary of Recent Advances , 2013, IEEE Signal Processing Magazine.

[19]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[20]  Paul W. Cuff,et al.  Distributed Channel Synthesis , 2012, IEEE Transactions on Information Theory.

[21]  Remi A. Chou,et al.  Polar coding for the broadcast channel with confidential messages , 2015, ITW.

[22]  Alexandre J. Pierrot,et al.  Strongly Secure Communications Over the Two-Way Wiretap Channel , 2010, IEEE Transactions on Information Forensics and Security.

[23]  Eren Sasoglu Polar codes for discrete alphabets , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  Alexander Vardy,et al.  A new polar coding scheme for strong security on wiretap channels , 2013, 2013 IEEE International Symposium on Information Theory.

[25]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[26]  Andrew Thangaraj,et al.  Strong secrecy for erasure wiretap channels , 2010, 2010 IEEE Information Theory Workshop.

[27]  Alexander Vardy,et al.  Channel upgrading for semantically-secure encryption on wiretap channels , 2013, 2013 IEEE International Symposium on Information Theory.

[28]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[29]  William Ryan,et al.  Channel Codes by William Ryan , 2009 .

[30]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[31]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[32]  Aylin Yener,et al.  Providing Secrecy Irrespective of Eavesdropper's Channel State , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[33]  Toshiyasu Matsushima,et al.  An Algorithm for Computing the Secrecy Capacity of Broadcast Channels with Confidential Messages , 2007, 2007 IEEE International Symposium on Information Theory.

[34]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[35]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[36]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[37]  Hirosuke Yamamoto,et al.  Secure Multiplex Coding Attaining Channel Capacity in Wiretap Channels , 2013, IEEE Transactions on Information Theory.

[38]  Jun Muramatsu,et al.  Channel Coding and Lossy Source Coding Using a Constrained Random Number Generator , 2013, ArXiv.

[39]  Alexander Vardy,et al.  Semantic Security for the Wiretap Channel , 2012, CRYPTO.

[40]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[41]  Andrew Thangaraj,et al.  Strong Secrecy on the Binary Erasure Wiretap Channel Using Large-Girth LDPC Codes , 2010, IEEE Transactions on Information Forensics and Security.

[42]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Laboratories Technical Journal.

[43]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[44]  Shlomo Shamai,et al.  Information Theoretic Security , 2009, Found. Trends Commun. Inf. Theory.

[45]  Te Sun Han Folklore in source coding: information-spectrum approach , 2005, IEEE Transactions on Information Theory.

[46]  Ke Zhang,et al.  Best binary equivocation code construction for syndrome coding , 2014, IET Commun..

[47]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[48]  Shu Lin,et al.  Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach , 2007, IEEE Transactions on Information Theory.

[49]  H. Vincent Poor,et al.  Secure Nested Codes for Type II Wiretap Channels , 2007, 2007 IEEE Information Theory Workshop.

[50]  Marco Baldi,et al.  Coding With Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis , 2012, IEEE Transactions on Information Forensics and Security.

[51]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[52]  Shigeki Miyake,et al.  Construction of wiretap channel codes by using sparse matrices , 2009, 2009 IEEE Information Theory Workshop.

[53]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[54]  Masahito Hayashi,et al.  Second-Order Asymptotics in Fixed-Length Source Coding and Intrinsic Randomness , 2005, IEEE Transactions on Information Theory.

[55]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[56]  Masahito Hayashi,et al.  Secure multiplex coding with dependent and non-uniform multiple messages , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[57]  Matthieu R. Bloch,et al.  Strong Secrecy From Channel Resolvability , 2011, IEEE Transactions on Information Theory.

[58]  Shlomo Shamai,et al.  Secrecy-achieving polar-coding , 2010, 2010 IEEE Information Theory Workshop.

[59]  Aylin Yener,et al.  Secrecy when the eavesdropper controls its channel states , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[60]  Mikael Skoglund,et al.  Nested Polar Codes for Wiretap and Relay Channels , 2010, IEEE Communications Letters.

[61]  U. Maurer The Strong Secret Key Rate of Discrete Random Triples , 1994 .

[62]  Amin Gohari,et al.  Achievability Proof via Output Statistics of Random Binning , 2014, IEEE Trans. Inf. Theory.

[63]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[64]  Andrew Thangaraj,et al.  Deterministic constructions for large girth protograph LDPC codes , 2013, 2013 IEEE International Symposium on Information Theory.

[65]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[66]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[67]  Suela Kodra Fuzzy extractors : How to generate strong keys from biometrics and other noisy data , 2015 .

[68]  William Ryan,et al.  Channel Codes: Classical and Modern , 2009 .

[69]  Jörg Kliewer,et al.  Strong coordination with polar codes , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[70]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[71]  Receiver Architectures Classical and Modern , 2000 .

[72]  Ender Tekin,et al.  The General Gaussian Multiple-Access and Two-Way Wiretap Channels: Achievable Rates and Cooperative Jamming , 2007, IEEE Transactions on Information Theory.

[73]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[74]  Gerhard Kramer,et al.  Effective secrecy: Reliability, confusion and stealth , 2013, 2014 IEEE International Symposium on Information Theory.

[75]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[76]  Jun Muramatsu,et al.  Channel Coding and Lossy Source Coding Using a Generator of Constrained Random Numbers , 2013, IEEE Transactions on Information Theory.

[77]  Mikael Skoglund,et al.  Equivocation of eve using two edge type LDPC codes for the binary erasure wiretap channel , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[78]  Andrew Thangaraj,et al.  Computation of secrecy capacity for more-capable channel pairs , 2008, 2008 IEEE International Symposium on Information Theory.

[79]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[80]  Jean Cardinal,et al.  Reconciliation of a quantum-distributed Gaussian key , 2001, IEEE Transactions on Information Theory.

[81]  Jörg Kliewer,et al.  On secure communication with constrained randomization , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[82]  Masahito Hayashi,et al.  Strong converse and second-order asymptotics of channel resolvability , 2014, 2014 IEEE International Symposium on Information Theory.