Red clump stars and Gaia: calibration of the standard candle using a hierarchical probabilistic model

Distances to individual stars in our own Galaxy are critical in order to piece together the nature of its velocity and spatial structure. Core helium burning red clump (RC) stars have similar luminosities, are abundant throughout the Galaxy, and thus constitute good standard candles. We build a hierarchical probabilistic model to quantify the quality of RC stars as standard candles using parallax measurements from the first Gaia data release. A unique aspect of our methodology is to fully account for (and marginalize over) parallax, photometry, and dust corrections uncertainties, which leads to more robust results than standard approaches. We determine the absolute magnitude and intrinsic dispersion of the RC in 2MASS bands J, H, Ks, Gaia G band, and WISE bands W1, W2, W3, and W4. We find that the absolute magnitude of the RC is $-1.61 \pm$ 0.01 (in Ks), $+0.44 \pm$ 0.01 (in G) , $-0.93 \pm$ 0.01 (in J), $-1.46 \pm$ 0.01 (in H), $-1.68 \pm$ 0.02 (in W1), $-1.69\pm$ 0.02 (in W2), $-1.67 \pm$ 0.02 (in W3), $1.76 \pm$ 0.01 mag (in W4). The mean intrinsic dispersion is $\sim 0.17 \pm$ 0.03 mag across all bands (yielding a typical distance precision of $\sim$ 8%). Thus RC stars are reliable and precise standard candles. In addition, we have also re-calibrated the zero point of the absolute magnitude of the RC in each band, which provide a benchmark for future studies to estimate distances to RC stars. Finally, the parallax error shrinkage in the hierarchical model outlined in this work can be used to obtain more precise parallaxes than Gaia for the most distant RC stars across the Galaxy.

[1]  Paul V. Johnson,et al.  VizieR Online Data Catalog: H 2 , D 2 , and HD c 3 Π u; , 2017 .

[2]  Jo Bovy,et al.  Stellar inventory of the solar neighbourhood using Gaia DR1 , 2017, 1704.05063.

[3]  J. Bovy,et al.  Absolute Magnitudes of Seismic Red Clumps in the Kepler Field and SAGA: The Age Dependency of the Distance Scale , 2017, 1704.03903.

[4]  Inmaculada Álvarez,et al.  A Panel Data Toolbox for MATLAB , 2017 .

[5]  L. Girardi,et al.  Using red clump stars to correct the Gaia DR1 parallaxes , 2017, 1701.02506.

[6]  S. Basu,et al.  A new method for the asteroseismic determination of the evolutionary state of red-giant stars , 2016, 1612.04751.

[7]  U. Munari,et al.  Gaia Data Release 1. The photometric data , 2016, 1612.02952.

[8]  Coryn A. L. Bailer-Jones,et al.  A Probabilistic Approach to Fitting Period–luminosity Relations and Validating Gaia Parallaxes , 2016, 1611.07035.

[9]  Kenneth J. Slatten,et al.  DISTANCE-DEPENDENT OFFSETS BETWEEN PARALLAXES FOR NEARBY STARS AND GAIA DR1 PARALLAXES , 2016, 1611.00656.

[10]  C. Fabricius,et al.  Gaia Data Release 1 - Principles of the photometric calibration of the G band , 2016, 1611.02036.

[11]  C. Aerts,et al.  Asteroseismic versus Gaia distances: A first comparison , 2016, 1609.08945.

[12]  L. Girardi Red Clump Stars , 2016 .

[13]  K. Stassun,et al.  EVIDENCE FOR A SYSTEMATIC OFFSET OF −0.25 mas IN THE GAIA DR1 PARALLAXES , 2016, 1609.05390.

[14]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[15]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[16]  Coryn A. L. Bailer-Jones,et al.  ESTIMATING DISTANCES FROM PARALLAXES. II. PERFORMANCE OF BAYESIAN DISTANCE ESTIMATORS ON A GAIA-LIKE CATALOGUE , 2016, 1609.03424.

[17]  Y. Elsworth,et al.  An accurate and self-consistent chemical abundance catalogue for the APOGEE/Kepler sample , 2016, 1604.08800.

[18]  B. Jiang,et al.  A PRECISE DETERMINATION OF THE MID-INFRARED INTERSTELLAR EXTINCTION LAW BASED ON THE APOGEE SPECTROSCOPIC SURVEY , 2016, 1602.02928.

[19]  J. Bovy,et al.  DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES , 2015, 1511.04088.

[20]  C. Bailer-Jones,et al.  Estimating Distances from Parallaxes , 2015, 1507.02105.

[21]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[22]  Anna Y. Q. Ho,et al.  THE CANNON: A DATA-DRIVEN APPROACH TO STELLAR LABEL DETERMINATION , 2015, 1501.07604.

[23]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[24]  Lennart Lindegren,et al.  The Tycho-Gaia astrometric solution. How to get 2.5 million parallaxes with less than one year of Gaia data , 2014, 1412.8770.

[25]  T. Beers,et al.  THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS , 2014, 1410.2503.

[26]  D. A. García-Hernández,et al.  TRACING CHEMICAL EVOLUTION OVER THE EXTENT OF THE MILKY WAY'S DISK WITH APOGEE RED CLUMP STARS , 2014, 1409.3566.

[27]  Lars Koesterke,et al.  THE APOGEE RED-CLUMP CATALOG: PRECISE DISTANCES, VELOCITIES, AND HIGH-RESOLUTION ELEMENTAL ABUNDANCES OVER A LARGE AREA OF THE MILKY WAY'S DISK , 2014, 1405.1032.

[28]  S. Bilir,et al.  First identification and absolute magnitudes of the red clump stars in the Solar neighbourhood for $WISE$ , 2013, 1304.0435.

[29]  Haibo Yuan,et al.  Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands , 2013, 1301.1427.

[30]  C. D. Laney,et al.  A new LMC K-band distance from precision measurements of nearby red clump stars , 2011, 1109.4800.

[31]  C. Fabricius,et al.  Gaia broad band photometry , 2010, 1008.0815.

[32]  A. McWilliam,et al.  TWO RED CLUMPS AND THE X-SHAPED MILKY WAY BULGE , 2010, 1008.0519.

[33]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[34]  M. Groenewegen The red clump absolute magnitude based on revised Hipparcos parallaxes , 2008, 0807.2764.

[35]  M. Groenewegen,et al.  K-band magnitude of the red clump as a distance indicator , 2007 .

[36]  Liverpool John Moores University,et al.  Population effects on the red giant clump absolute magnitude: The K-band , 2002, astro-ph/0208057.

[37]  K. Cook,et al.  K-Band Red Clump Distance to the Large Magellanic Cloud , 2002, astro-ph/0205495.

[38]  L. Girardi,et al.  Population effects on the red giant clump absolute magnitude, and distance determinations to nearby galaxies , 2000, astro-ph/0007343.

[39]  D. Alves K-Band Calibration of the Red Clump Luminosity , 2000, astro-ph/0003329.

[40]  A. Udalski,et al.  The Optical Gravitational Lensing Experiment: Red Clump Stars as a Distance Indicator , 1999, The Astrophysical journal.

[41]  K. Stanek,et al.  A “Short” Distance to the Large Magellanic Cloud With the Hipparcos Calibrated Red Clump Stars , 1998, astro-ph/9803181.