ß-barrel Channel Proteins as Tools in Nanotechnology

[1]  Evaluating protein:protein complex formation using synchrotron radiation circular dichroism spectroscopy , 2007, Proteins.

[2]  Yasuhiko Yoshida,et al.  Cell‐free production and stable‐isotope labeling of milligram quantities of proteins , 1999, FEBS letters.

[3]  Ayyalusamy Ramamoorthy,et al.  The Magic of Bicelles Lights Up Membrane Protein Structure , 2012, Chemical reviews.

[4]  J. Popot,et al.  Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX , 2010, European Biophysics Journal.

[5]  A M Gronenborn,et al.  Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. , 1990, Science.

[6]  Georg Weidenspointner,et al.  Lipidic phase membrane protein serial femtosecond crystallography , 2012, Nature Methods.

[7]  K. Wüthrich,et al.  β2-Adrenergic receptor solutions for structural biology analyzed with microscale NMR diffusion measurements. , 2013, Angewandte Chemie.

[8]  G. Privé,et al.  Refolding SDS-denatured proteins by the addition of amphipathic cosolvents. , 2008, Journal of molecular biology.

[9]  Robert M Stroud,et al.  A general protocol for the crystallization of membrane proteins for X-ray structural investigation , 2009, Nature Protocols.

[10]  G. Wagner,et al.  Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. , 2009, Journal of the American Chemical Society.

[11]  A. Plückthun,et al.  Recent advances in producing and selecting functional proteins by using cell-free translation. , 1998, Current opinion in biotechnology.

[12]  Jonathan G. Lees,et al.  Analyses of circular dichroism spectra of membrane proteins , 2003, Protein science : a publication of the Protein Society.

[13]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[14]  J. Keeler Understanding NMR Spectroscopy , 2005 .

[15]  A. Dunker,et al.  Aromatic and Cystine Side-Chain Circular Dichroism in Proteins , 1996 .

[16]  G. Wagner,et al.  Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. , 2013, Journal of the American Chemical Society.

[17]  C. Choi,et al.  A Semicontinuous Prokaryotic Coupled Transcription/Translation System Using a Dialysis Membrane , 1996, Biotechnology progress (Print).

[18]  E. Carpenter,et al.  Overcoming the challenges of membrane protein crystallography , 2008, Current opinion in structural biology.

[19]  James C. Whisstock,et al.  The REFOLD database: a tool for the optimization of protein expression and refolding , 2005, Nucleic Acids Res..

[20]  Michael Habeck,et al.  Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals , 2012, Nature Methods.

[21]  Michael A. Goren,et al.  Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex. , 2008, Protein expression and purification.

[22]  Akira Nozawa,et al.  Robotic large-scale application of wheat cell-free translation to structural studies including membrane proteins. , 2011, New biotechnology.

[23]  U. Schwaneberg,et al.  Polymersome surface decoration by an EGFP fusion protein employing Cecropin A as peptide "anchor". , 2012, Journal of biotechnology.

[24]  O. Millet,et al.  Diagonal-free 3D/4D HN,HN-TROSY-NOESY-TROSY. , 2010, Journal of the American Chemical Society.

[25]  S. White,et al.  CD Spectroscopy of Peptides and Proteins Bound to Large Unilamellar Vesicles , 2010, The Journal of Membrane Biology.

[26]  F. Hache Application of time-resolved circular dichroism to the study of conformational changes in photochemical and photobiological processes , 2009 .

[27]  N. Greenfield Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions , 2006, Nature Protocols.

[28]  O. Lambert,et al.  Use of detergents in two-dimensional crystallization of membrane proteins. , 2000, Biochimica et biophysica acta.

[29]  R. Burgess,et al.  Purification of overproduced Escherichia coli RNA polymerase sigma factors by solubilizing inclusion bodies and refolding from Sarkosyl. , 1996, Methods in enzymology.

[30]  M. Blackledge,et al.  Describing intrinsically disordered proteins at atomic resolution by NMR. , 2013, Current opinion in structural biology.

[31]  R. Riek,et al.  BMC Structural Biology BioMed Central Methodology article , 2006 .

[32]  H. Schägger,et al.  A practical guide to membrane protein purification , 1994 .

[33]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[34]  R. Rudolph,et al.  In vitro folding of inclusion body proteins , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[35]  G. Montelione,et al.  The Use of the Condensed Single Protein Production System for Isotope-Labeled Outer Membrane Proteins, OmpA and OmpX in E. coli , 2011, Molecular biotechnology.

[36]  L. Kay,et al.  Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy , 2006, Nature Protocols.

[37]  S. Buchanan,et al.  Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. , 1999, Current opinion in structural biology.

[38]  F. Jähnig,et al.  Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules. , 1997, European journal of biochemistry.

[39]  T. Kigawa,et al.  Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. , 2005, Protein expression and purification.

[40]  P. Nissen,et al.  Flexible P-type ATPases interacting with the membrane. , 2012, Current opinion in structural biology.

[41]  N. Greenfield Analysis of the kinetics of folding of proteins and peptides using circular dichroism , 2007, Nature Protocols.

[42]  H. Mertens,et al.  Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. , 2013, Biochimica et biophysica acta.

[43]  K. Zeth,et al.  Structural Basis of Outer Membrane Protein Biogenesis in Bacteria , 2011, The Journal of Biological Chemistry.

[44]  Stefan Matile,et al.  Rigid-rod molecules in biomembrane models: from hydrogen-bonded chains to synthetic multifunctional pores. , 2005, Accounts of chemical research.

[45]  Takuya Ueda,et al.  A highly controllable reconstituted cell-free system--a breakthrough in protein synthesis research. , 2010, Current pharmaceutical biotechnology.

[46]  G. Wider,et al.  The 3D NOESY-[(1)H,(15)N,(1)H]-ZQ-TROSY NMR experiment with diagonal peak suppression. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Sanders,et al.  Solution NMR approaches for establishing specificity of weak heterodimerization of membrane proteins. , 2011, Journal of the American Chemical Society.

[48]  Christopher G. Tate,et al.  Overcoming barriers to membrane protein structure determination , 2011, Nature Biotechnology.

[49]  E. H. Strickland,et al.  Aromatic contributions to circular dichroism spectra of proteins. , 1974, CRC critical reviews in biochemistry.

[50]  Robert M Stroud,et al.  Structural basis of aquaporin inhibition by mercury. , 2007, Journal of molecular biology.

[51]  C. Sanders,et al.  Lysophospholipid micelles sustain the stability and catalytic activity of diacylglycerol kinase in the absence of lipids. , 2010, Biochemistry.

[52]  Andrew J. Nieuwkoop,et al.  High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data , 2011, Journal of biomolecular NMR.

[53]  B. Wallace,et al.  Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. , 2006, Chemical Society reviews.

[54]  Nuclear magnetic resonance structural studies of membrane proteins in micelles and bilayers. , 2007, Methods in molecular biology.

[55]  G. Schulz A new classification of membrane protein crystals. , 2011, Journal of molecular biology.

[56]  S. Matile,et al.  Rigid-rod beta-barrels as lipocalin models: probing confined space by carotenoid encapsulation. , 2000, Chemistry.

[57]  J. Popot,et al.  Amphipols and fluorinated surfactants: Two alternatives to detergents for studying membrane proteins in vitro. , 2010, Methods in molecular biology.

[58]  Volker Dötsch,et al.  Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. , 2005, The FEBS journal.

[59]  M. Brandon,et al.  Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. , 1995, Biochemistry.

[60]  Chuyang Y. Tang,et al.  Desalination by biomimetic aquaporin membranes: Review of status and prospects , 2013 .

[61]  B. Schoenborn A history of neutrons in biology: the development of neutron protein crystallography at BNL and LANL. , 2010, Acta crystallographica. Section D, Biological crystallography.

[62]  A. Ducruix,et al.  Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa. , 2001, Protein expression and purification.

[63]  A. Panda,et al.  Solubilization of Recombinant Ovine Growth Hormone with Retention of Native‐like Secondary Structure and Its Refolding from the Inclusion Bodies of Escherichia coli , 1998, Biotechnology progress.

[64]  F. Marassi,et al.  Hydration-optimized oriented phospholipid bilayer samples for solid-state NMR structural studies of membrane proteins. , 2003, Journal of magnetic resonance.

[65]  So Iwata,et al.  Methods and Results in Crystallization of Membrane Proteins , 2003 .

[66]  D. Engelman,et al.  Membrane physical properties influence transmembrane helix formation , 2012, Proceedings of the National Academy of Sciences.

[67]  G. Fasman,et al.  Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. , 1992, Analytical biochemistry.

[68]  Tomio Ogasawara,et al.  A bilayer cell‐free protein synthesis system for high‐throughput screening of gene products , 2002, FEBS letters.

[69]  H. Chakraborty,et al.  A simple method for correction of circular dichroism spectra obtained from membrane-containing samples. , 2012, Biochemistry.

[70]  Kouhei Tsumoto,et al.  Practical considerations in refolding proteins from inclusion bodies. , 2003, Protein expression and purification.

[71]  Samuel Wagner,et al.  Tuning Escherichia coli for membrane protein overexpression , 2008, Proceedings of the National Academy of Sciences.

[72]  F. Arnold,et al.  Engineered metal-binding proteins: purification to protein folding. , 1991, Science.

[73]  Andrew J. Miles,et al.  A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy , 2011, Bioinform..

[74]  B. Wallace,et al.  Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. , 2008, Biopolymers.

[75]  A. Wand,et al.  A method for solution NMR structural studies of large integral membrane proteins: reverse micelle encapsulation. , 2010, Biochimica et biophysica acta.

[76]  B. Wallace Protein characterisation by synchrotron radiation circular dichroism spectroscopy , 2009, Quarterly Reviews of Biophysics.

[77]  G. Chang,et al.  An Escherichia coli-Based Cell-Free System for Large-Scale Production of Functional Mammalian Membrane Proteins Suitable for X-Ray Crystallography , 2010, Journal of Molecular Microbiology and Biotechnology.

[78]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[79]  Heinz Rüterjans,et al.  High level cell-free expression and specific labeling of integral membrane proteins. , 2004, European journal of biochemistry.

[80]  T. Iverson,et al.  Chapter 10 A Practical Guide to X‐Ray Crystallography of β‐barrel Membrane Proteins: Expression, Purification, Detergent Selection, and Crystallization , 2009 .

[81]  R. Woody Circular dichroism spectrum of peptides in the poly(Pro)II conformation. , 2009, Journal of the American Chemical Society.

[82]  S. Krishnaswamy,et al.  Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. , 2005, Protein expression and purification.

[83]  Martin Caffrey,et al.  Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. , 2012, Biochemistry.

[84]  L. Tamm,et al.  Structure of outer membrane protein G by solution NMR spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[85]  Karl Edman,et al.  Analyzing protein functions in four dimensions , 2000, Nature Structural Biology.

[86]  P. Bayley,et al.  The rotatory properties of molecules containing two peptide groups: theory. , 1969, The Journal of physical chemistry.

[87]  Walter Hunziker,et al.  Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes. , 2011, Biointerphases.

[88]  Frank Wien,et al.  Biomedical applications of synchrotron radiation circular dichroism spectroscopy: identification of mutant proteins associated with disease and development of a reference database for fold motifs. , 2004, Faraday discussions.

[89]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[90]  V. Kaberdin,et al.  Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity , 2012, Proceedings of the National Academy of Sciences.

[91]  K. Rothschild,et al.  Cell-Free Protein Synthesis Systems: Biotechnological Applications , 2006, Biotechnology & genetic engineering reviews.

[92]  Jonathan D. Hirst,et al.  DichroCalc - circular and linear dichroism online , 2009, Bioinform..

[93]  C. Cantor,et al.  Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function , 1980 .

[94]  David A. Snyder,et al.  Covariance NMR in higher dimensions: application to 4D NOESY spectroscopy of proteins , 2007, Journal of biomolecular NMR.

[95]  K. Wüthrich,et al.  Micro-coil NMR to monitor optimization of the reconstitution conditions for the integral membrane protein OmpW in detergent micelles , 2012, Journal of biomolecular NMR.

[96]  Jen-Tsi Yang,et al.  β-II conformation of all-β proteins can be distinguished from unordered form by circular dichroism , 1992 .

[97]  Dong-Myung Kim,et al.  Prolonging cell-free protein synthesis with a novel ATP regeneration system. , 1999, Biotechnology and bioengineering.

[98]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[99]  E. R. Andrew,et al.  Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed , 1958, Nature.

[100]  M. Achtman,et al.  Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[101]  E. Carpenter,et al.  Insights into outer membrane protein crystallization , 2008, Molecular membrane biology.

[102]  H. Yeo Production and crystallization of bacterial type V secretion proteins. , 2013, Methods in molecular biology.

[103]  Geoffrey Chang,et al.  The past, present and future of cell-free protein synthesis. , 2005, Trends in biotechnology.

[104]  G. Waksman,et al.  Pilus biogenesis at the outer membrane of Gram-negative bacterial pathogens. , 2012, Current opinion in structural biology.

[105]  G. Böhm,et al.  Quantitative analysis of protein far UV circular dichroism spectra by neural networks. , 1992, Protein engineering.

[106]  Lee Whitmore,et al.  The Protein Circular Dichroism Data Bank (PCDDB): A bioinformatics and spectroscopic resource , 2005, Proteins.

[107]  E Schwarz,et al.  Inhibition of aggregation side reactions during in vitro protein folding. , 1999, Methods in enzymology.

[108]  A. Engel,et al.  Dynamics of Klebsiella pneumoniae OmpA transmembrane domain: the four extracellular loops display restricted motion behavior in micelles and in lipid bilayers. , 2012, Biochimica et biophysica acta.

[109]  G. Schulz,et al.  Strategy for membrane protein crystallization exemplified with OmpA and OmpX , 1999, Proteins.

[110]  I. V. van Stokkum,et al.  Estimation of protein secondary structure and error analysis from circular dichroism spectra. , 1990, Analytical biochemistry.

[111]  A. Deacon,et al.  Distributed structure determination at the JCSG , 2011, Acta crystallographica. Section D, Biological crystallography.

[112]  J. Tommassen,et al.  The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis , 2009, Journal of bacteriology.

[113]  G. Wagner,et al.  Nonmicellar systems for solution NMR spectroscopy of membrane proteins. , 2010, Current opinion in structural biology.

[114]  Peipei Ping,et al.  The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating , 2008, Proceedings of the National Academy of Sciences.

[115]  C. Tate,et al.  Agonist-bound structures of G protein-coupled receptors. , 2012, Current opinion in structural biology.

[116]  T. Keiderling,et al.  Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra. , 1999, Analytical biochemistry.

[117]  F. Furche,et al.  Circular dichroism: electronic , 2012 .

[118]  Paul Curnow,et al.  Membrane proteins, lipids and detergents: not just a soap opera. , 2004, Biochimica et biophysica acta.

[119]  A. N. McKeown,et al.  A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes. , 2011, Biochemistry.

[120]  Qingxin Li,et al.  Solution NMR study of integral membrane proteins. , 2011, Current opinion in chemical biology.

[121]  Rui Gan,et al.  Cell-free protein synthesis: applications come of age. , 2012, Biotechnology advances.

[122]  R. Tycko Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. , 2001, Annual review of physical chemistry.

[123]  Michael C Jewett,et al.  An integrated cell-free metabolic platform for protein production and synthetic biology , 2008, Molecular systems biology.

[124]  Arthur G. Palmer,et al.  Nuclear Magnetic Resonance Studies of Biopolymer Dynamics , 1996 .

[125]  D. Stuart,et al.  Production, crystallization, and preliminary X‐ray analysis of the human MHC class Ib molecule HLA‐E , 1998, Protein science : a publication of the Protein Society.

[126]  S. Opella,et al.  Structure determination of membrane proteins in five easy pieces. , 2011, Methods.

[127]  M. He,et al.  Cell-free protein synthesis for proteomics. , 2004, Briefings in functional genomics & proteomics.

[128]  J. Lenormand,et al.  Production of membrane proteins using cell–free expression systems , 2007, Expert review of proteomics.

[129]  B. Meier,et al.  4D solid-state NMR for protein structure determination. , 2012, Physical chemistry chemical physics : PCCP.

[130]  M. Fioroni,et al.  Oxidation of Fe(II) horse heart cytochrome c by ultrasound waves. , 1996, Biochimica et biophysica acta.

[131]  L. Lanier,et al.  Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family , 2001, Immunogenetics.

[132]  Martin Caffrey,et al.  Use of a Robot for High-throughput Crystallization of Membrane Proteins in Lipidic Mesophases , 2012, Journal of visualized experiments : JoVE.

[133]  D. Marsh,et al.  Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation. , 2008, Biochemistry.

[134]  O. Zerbe,et al.  NMR of Membrane‐Associated Peptides and Proteins , 2008 .

[135]  Y. Gohon,et al.  Amphipathic polymers: tools to fold integral membrane proteins to their active form. , 2006, Biochemistry.

[136]  S. Sligar,et al.  Membrane protein assembly into Nanodiscs , 2010, FEBS letters.

[137]  J. Prestegard,et al.  Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules , 1994 .

[138]  E. Bamberg,et al.  Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. , 2007, Journal of molecular biology.

[139]  Kurt Wüthrich,et al.  NMR analysis of a 900K GroEL–GroES complex , 2002, Nature.

[140]  A. K. Mohanty,et al.  Inhibition of tobacco etch virus protease activity by detergents. , 2003, Protein expression and purification.

[141]  N. Sreerama,et al.  Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. , 2000, Analytical biochemistry.

[142]  J. Chou,et al.  Influenza M2 proton channels. , 2011, Biochimica et biophysica acta.

[143]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[144]  L. Masterson,et al.  Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. , 2012, Advances in experimental medicine and biology.

[145]  B. Wallace,et al.  Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. , 1984, Analytical biochemistry.

[146]  Josef Michl,et al.  Molecular Rods. 1. Simple Axial Rods. , 1999, Chemical reviews.

[147]  M. Hunter,et al.  Toward structure determination using membrane-protein nanocrystals and microcrystals. , 2011, Methods.

[148]  H. Engelhardt,et al.  Expression, two-dimensional crystallization, and three-dimensional reconstruction of the beta8 outer membrane protein Omp21 from Comamonas acidovorans. , 2000, Journal of structural biology.

[149]  S. Provencher,et al.  Estimation of globular protein secondary structure from circular dichroism. , 1981, Biochemistry.

[150]  G. Wider,et al.  NMR structure of the integral membrane protein OmpX. , 2004, Journal of molecular biology.

[151]  W C Johnson,et al.  Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. , 1987, Analytical biochemistry.

[152]  M. Baldus,et al.  High-resolution solid-state NMR applied to polypeptides and membrane proteins. , 2003, Accounts of chemical research.

[153]  Hector Viadiu,et al.  Nanodiscs versus macrodiscs for NMR of membrane proteins. , 2011, Biochemistry.

[154]  N. Greenfield Circular dichroism analysis for protein-protein interactions. , 2004, Methods in molecular biology.

[155]  Avner Schlessinger,et al.  Coordinating the impact of structural genomics on the human α-helical transmembrane proteome , 2013, Nature Structural &Molecular Biology.

[156]  J. East Membrane structural biology with biochemical and biophysical foundations , 2008 .

[157]  C. P. Moon,et al.  Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes. , 2011, Methods in enzymology.

[158]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[159]  G. Sciara,et al.  Highlights from recently determined structures of membrane proteins: a focus on channels and transporters. , 2012, Current opinion in structural biology.

[160]  M. A. Andrade,et al.  Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. , 1993, Protein engineering.

[161]  R. Neutze,et al.  Lipidic sponge phase crystallization of membrane proteins. , 2006, Journal of molecular biology.

[162]  W C Johnson,et al.  Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. , 1986, Analytical biochemistry.

[163]  Andrew J. Miles,et al.  Novel methods for secondary structure determination using low wavelength (VUV) circular dichroism spectroscopic data , 2006, BMC Bioinformatics.

[164]  M. Jewett,et al.  Mimicking the Escherichia coli cytoplasmic environment activates long‐lived and efficient cell‐free protein synthesis , 2004, Biotechnology and bioengineering.

[165]  B. Paterson,et al.  Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Lee Whitmore,et al.  PCDDB: the protein circular dichroism data bank, a repository for circular dichroism spectral and metadata , 2010, Nucleic Acids Res..

[167]  M. Swerdel,et al.  Cell-free translation in lysates from Spodoptera frugiperda (Lepidoptera: Noctuidae) cells. , 1989, Comparative biochemistry and physiology. B, Comparative biochemistry.

[168]  A. Sali,et al.  Facile backbone structure determination of human membrane proteins by NMR spectroscopy , 2012, Nature Methods.

[169]  Soojay Banerjee,et al.  Analytical approaches for studying transporters, channels and porins. , 2012, Chemical reviews.

[170]  J. Popot,et al.  NMR study of a membrane protein in detergent-free aqueous solution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Mingyue He,et al.  Cell-free protein synthesis: applications in proteomics and biotechnology. , 2008, New biotechnology.

[172]  G. Zubay,et al.  In vitro synthesis of protein in microbial systems. , 1973, Annual review of genetics.

[173]  A. Arseniev,et al.  Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. , 2013, Biochimica et biophysica acta.

[174]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[175]  Marshall W. Nirenberg,et al.  The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides , 1961, Proceedings of the National Academy of Sciences.

[176]  S. Kundu,et al.  Thermal, Chemical and pH Induced Denaturation of a Multimeric β-Galactosidase Reveals Multiple Unfolding Pathways , 2012, PloS one.

[177]  Christian Griesinger,et al.  Clean TOCSY for proton spin system identification in macromolecules , 1988 .

[178]  A. Gunasekera,et al.  Nuclear magnetic resonance structural studies of a potassium channel-charybdotoxin complex. , 2005, Biochemistry.

[179]  I. Lowe,et al.  Free Induction Decays of Rotating Solids , 1959 .

[180]  A. Watts,et al.  Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. , 2011, Current opinion in chemical biology.

[181]  D. Stokes,et al.  Membrane protein structure determination by electron crystallography. , 2012, Current opinion in structural biology.

[182]  E. Gasior,et al.  The preparation and characterization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. , 1979, The Journal of biological chemistry.

[183]  Thomas W. Hamann,et al.  The nanodisc: a novel tool for membrane protein studies , 2009, Biological chemistry.

[184]  W. G. Burgers,et al.  Early papers on diffraction of X-rays by crystals , 1969 .

[185]  A. Spirin,et al.  A continuous cell-free translation system capable of producing polypeptides in high yield. , 1988, Science.

[186]  Robert W. Janes,et al.  Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy: 1 , 2009 .

[187]  Kurt Wüthrich,et al.  NMR in structural biology: a collection of papers by Kurt Wuthrich , 1995 .

[188]  R. Woody A significant role for high-energy transitions in the ultraviolet circular dichroism spectra of polypeptides and proteins. , 2010, Chirality.

[189]  G. DeTitta,et al.  Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography. , 2010, Protein expression and purification.

[190]  J. Swartz,et al.  Cell‐free synthesis of functional aquaporin Z in synthetic liposomes , 2009, Biotechnology and bioengineering.

[191]  A. Arseniev,et al.  NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. , 2010, Journal of the American Chemical Society.

[192]  M. Egmond,et al.  In vitro folding, purification and characterization of Escherichia coli outer membrane protease ompT. , 2000, European journal of biochemistry.

[193]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[194]  Scott A. Lesley,et al.  Protein Production and Crystallization at the Joint Center for Structural Genomics , 2005, Journal of Structural and Functional Genomics.

[195]  E. Hochuli,et al.  New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. , 1987, Journal of chromatography.

[196]  Alison Rodger,et al.  Circular and linear dichroism of proteins. , 2007, Physical chemistry chemical physics : PCCP.

[197]  N. Sreerama,et al.  A self-consistent method for the analysis of protein secondary structure from circular dichroism. , 1993, Analytical biochemistry.

[198]  B. Habenstein,et al.  Structural investigations of molecular machines by solid-state NMR. , 2013, Accounts of chemical research.

[199]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[200]  C. Sanders,et al.  Membrane protein preparation for TROSY NMR screening. , 2005, Methods in enzymology.

[201]  P. Bayley The analysis of circular dichroism of biomolecules , 1973 .

[202]  B. Wallace,et al.  Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. , 1987, Biochemistry.

[203]  J. Mosca,et al.  Restoration of protein synthesis in lysed rabbit reticulocytes by the enzymatic removal of adenosine 5'-monophosphate with either AMP deaminase or AMP nucleosidase. , 1983, Biochemistry.

[204]  So Iwata,et al.  Rationalizing α‐helical membrane protein crystallization , 2008, Protein science : a publication of the Protein Society.