TDP-43 Regulates the Microprocessor Complex Activity During In Vitro Neuronal Differentiation

[1]  L. Schöls,et al.  Targeted high-throughput sequencing identifies a TARDBP mutation as a cause of early-onset FTD without motor neuron disease , 2014, Neurobiology of Aging.

[2]  M. Cynader,et al.  Reducing TDP-43 aggregation does not prevent its cytotoxicity , 2013, Acta neuropathologica communications.

[3]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[4]  M. Hennig,et al.  The Core Microprocessor Component DiGeorge Syndrome Critical Region 8 (DGCR8) Is a Nonspecific RNA-binding Protein* , 2013, The Journal of Biological Chemistry.

[5]  G. Sobue,et al.  Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. , 2013, Brain : a journal of neurology.

[6]  I. Bozzoni,et al.  FUS stimulates microRNA biogenesis by facilitating co‐transcriptional Drosha recruitment , 2012, The EMBO journal.

[7]  W. Rossoll,et al.  The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. , 2012, Human molecular genetics.

[8]  Michal Linial,et al.  Toward a combinatorial nature of microRNA regulation in human cells , 2012, Nucleic acids research.

[9]  N. Proudfoot,et al.  Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. , 2012, Genes & development.

[10]  D. Annibali,et al.  A New Module in Neural Differentiation Control: Two MicroRNAs Upregulated by Retinoic Acid, miR-9 and -103, Target the Differentiation Inhibitor ID2 , 2012, PloS one.

[11]  Eduardo Eyras,et al.  DGCR8 HITS-CLIP reveals novel functions for the Microprocessor , 2012, Nature Structural &Molecular Biology.

[12]  Lien-Szu Wu,et al.  Targeted Depletion of TDP-43 Expression in the Spinal Cord Motor Neurons Leads to the Development of Amyotrophic Lateral Sclerosis-like Phenotypes in Mice* , 2012, Journal of Biological Chemistry.

[13]  Stuart A. Wilson,et al.  Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs , 2012, Nature Neuroscience.

[14]  E. Buratti,et al.  TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. , 2012, Trends in biochemical sciences.

[15]  A. Pasquinelli,et al.  Small non-coding RNAs mount a silent revolution in gene expression. , 2012, Current opinion in cell biology.

[16]  Vincenzo Silani,et al.  TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells* , 2012, The Journal of Biological Chemistry.

[17]  Y. Kawahara,et al.  TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes , 2012, Proceedings of the National Academy of Sciences.

[18]  Tzong-Der Way,et al.  The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies , 2012, Nature Communications.

[19]  J. Trojanowski,et al.  Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration , 2011, Nature Reviews Neuroscience.

[20]  A. Zell,et al.  TDP-43 regulates global translational yield by splicing of exon junction complex component SKAR , 2011, Nucleic acids research.

[21]  D. Cleveland,et al.  The Seeds of Neurodegeneration: Prion-like Spreading in ALS , 2011, Cell.

[22]  F. Guillemot,et al.  Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis , 2011, Development.

[23]  J. Kril,et al.  Cytoplasmic Accumulation and Aggregation of TDP-43 upon Proteasome Inhibition in Cultured Neurons , 2011, PloS one.

[24]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[25]  E. Buratti,et al.  TDP-43 Regulates Drosophila Neuromuscular Junctions Growth by Modulating Futsch/MAP1B Levels and Synaptic Microtubules Organization , 2011, PloS one.

[26]  D. Dickson,et al.  TDP-43 in aging and Alzheimer's disease - a review. , 2011, International journal of clinical and experimental pathology.

[27]  Jernej Ule,et al.  TDP‐43 regulates its mRNA levels through a negative feedback loop , 2011, The EMBO journal.

[28]  Daniel R. Dries,et al.  TDP-43 Is Directed to Stress Granules by Sorbitol, a Novel Physiological Osmotic and Oxidative Stressor , 2010, Molecular and Cellular Biology.

[29]  R. Baloh,et al.  TDP-43-Based Animal Models of Neurodegeneration: New Insights into ALS Pathology and Pathophysiology , 2010, Neurodegenerative Diseases.

[30]  H. Feldman,et al.  Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin , 2010, Neuron.

[31]  Thomas A Neubert,et al.  Canonical and alternate functions of the microRNA biogenesis machinery. , 2010, Genes & development.

[32]  L. Petrucelli,et al.  Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments , 2010, Molecular Neurodegeneration.

[33]  Huilin Zhou,et al.  ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS , 2010, Proceedings of the National Academy of Sciences.

[34]  T. Rohn,et al.  Caspase-Cleaved Transactivation Response DNA-Binding Protein 43 in Parkinson’s Disease and Dementia with Lewy Bodies , 2010, Neurodegenerative Diseases.

[35]  E. Buratti,et al.  Nuclear factor TDP‐43 can affect selected microRNA levels , 2010, The FEBS journal.

[36]  P. Jin,et al.  Roles of small regulatory RNAs in determining neuronal identity , 2010, Nature Reviews Neuroscience.

[37]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[38]  O. King,et al.  Prion-like disorders: blurring the divide between transmissibility and infectivity , 2010, Journal of Cell Science.

[39]  John Q. Trojanowski,et al.  TAR DNA-binding protein 43 in neurodegenerative disease , 2010, Nature Reviews Neurology.

[40]  M. Piccinini,et al.  TDP‐43 Redistribution is an Early Event in Sporadic Amyotrophic Lateral Sclerosis , 2010, Brain pathology.

[41]  R. Chitta,et al.  Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. , 2010, Journal of proteome research.

[42]  Tobias M. Rasse,et al.  Knockdown of transactive response DNA‐binding protein (TDP‐43) downregulates histone deacetylase 6 , 2010, The EMBO journal.

[43]  Yuxin Fan,et al.  Sporadic ALS has compartment-specific aberrant exon splicing and altered cell–matrix adhesion biology , 2009, Human molecular genetics.

[44]  M. Luca,et al.  Mutation within TARDBP leads to Frontotemporal Dementia without motor neuron disease , 2009, Human mutation.

[45]  E. Buratti,et al.  TDP‐43 is recruited to stress granules in conditions of oxidative insult , 2009, Journal of neurochemistry.

[46]  John Q Trojanowski,et al.  Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[47]  N. Luquin,et al.  Genetic variants in the promoter of TARDBP in sporadic amyotrophic lateral sclerosis , 2009, Neuromuscular Disorders.

[48]  B. Ghetti,et al.  TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea , 2009, Movement disorders : official journal of the Movement Disorder Society.

[49]  J. Morris,et al.  TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy , 2009, Acta Neuropathologica.

[50]  R. Gregory,et al.  Post-transcriptional control of DGCR8 expression by the Microprocessor. , 2009, RNA.

[51]  A. Gitler,et al.  TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity* , 2009, The Journal of Biological Chemistry.

[52]  N. Luquin,et al.  TDP‐43 neuropathology is similar in sporadic amyotrophic lateral sclerosis with or without TDP‐43 mutations , 2009, Neuropathology and applied neurobiology.

[53]  Sebastian Kadener,et al.  Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. , 2009, RNA.

[54]  D. Cleveland,et al.  Rethinking ALS: The FUS about TDP-43 , 2009, Cell.

[55]  R. Gregory,et al.  Many roads to maturity: microRNA biogenesis pathways and their regulation , 2009, Nature Cell Biology.

[56]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[57]  P. Kuo,et al.  Structural insights into TDP-43 in nucleic-acid binding and domain interactions , 2009, Nucleic acids research.

[58]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[59]  P. Mcgeer,et al.  Colocalization of Transactivation-Responsive DNA-Binding Protein 43 and Huntingtin in Inclusions of Huntington Disease , 2008, Journal of neuropathology and experimental neurology.

[60]  A. Isaacs,et al.  TDP-43 is a culprit in human neurodegeneration, and not just an innocent bystander , 2008, Mammalian Genome.

[61]  Hitoshi Takahashi,et al.  Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia , 2008, Acta Neuropathologica.

[62]  J. Trojanowski,et al.  Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation* , 2008, Journal of Biological Chemistry.

[63]  I-Fan Wang,et al.  TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor , 2008, Journal of neurochemistry.

[64]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[65]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[66]  A. Kakita,et al.  TDP‐43 mutation in familial amyotrophic lateral sclerosis , 2008, Annals of neurology.

[67]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[68]  P. Schulz,et al.  Cognitive impairment in familial ALS , 2007, Neurology.

[69]  I. Bozzoni,et al.  The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells , 2007, Proceedings of the National Academy of Sciences.

[70]  B. O’Malley,et al.  DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs , 2007, Nature Cell Biology.

[71]  D. Neary,et al.  Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43 , 2007, Acta Neuropathologica.

[72]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[73]  Xiaohui S. Xie,et al.  Open Access Comparative Sequence Analysis Reveals an Intricate Network among Rest, Creb and Mirna in Mediating Neuronal Gene Expression , 2006 .

[74]  V. Narry Kim,et al.  Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing , 2006, Nucleic acids research.

[75]  M. Stoler,et al.  cis-requirement for the maintenance of round spermatid-specific transcription. , 2006, Developmental biology.

[76]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[77]  David Haussler,et al.  Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..

[78]  I. Verma,et al.  Design and cloning of lentiviral vectors expressing small interfering RNAs , 2006, Nature Protocols.

[79]  E. Buratti,et al.  TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through Its C-terminal Tail , 2005, Journal of Biological Chemistry.

[80]  Oliver Hobert,et al.  MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  S H Appel,et al.  Prevalence and patterns of cognitive impairment in sporadic ALS , 2005, Neurology.

[82]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[83]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[84]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[85]  I. Bozzoni,et al.  Coupling between snoRNP assembly and 3′ processing controls box C/D snoRNA biosynthesis in yeast , 2004, The EMBO journal.

[86]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[87]  Ichiro Kanazawa,et al.  Glutamate receptors: RNA editing and death of motor neurons , 2004, Nature.

[88]  M. Schwab MYCN in neuronal tumours. , 2004, Cancer letters.

[89]  E. Haura,et al.  p27Kip1 and p21Cip1 Are Not Required for the Formation of Active D Cyclin-cdk4 Complexes , 2003, Molecular and Cellular Biology.

[90]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[91]  I. Bozzoni,et al.  Purification, Cloning, and Characterization of XendoU, a Novel Endoribonuclease Involved in Processing of Intron-encoded Small Nucleolar RNAs in Xenopus laevis * , 2003, The Journal of Biological Chemistry.

[92]  J. Lunec,et al.  p53 cellular localization and function in neuroblastoma: evidence for defective G(1) arrest despite WAF1 induction in MYCN-amplified cells. , 2001, The American journal of pathology.

[93]  T. Dörk,et al.  Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping , 2001, The EMBO journal.

[94]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[95]  A. Goldberg,et al.  Proteasome inhibitors: valuable new tools for cell biologists. , 1998, Trends in cell biology.

[96]  Lin Jin,et al.  Aberrant RNA Processing in a Neurodegenerative Disease: the Cause for Absent EAAT2, a Glutamate Transporter, in Amyotrophic Lateral Sclerosis , 1998, Neuron.

[97]  K. Tomita,et al.  bHLH transcription factors and mammalian neuronal differentiation. , 1997, The international journal of biochemistry & cell biology.

[98]  K. Akagawa,et al.  Differential expression of neuroD in primary cultures of cerebral cortical neurons. , 1997, Experimental cell research.

[99]  D Harrich,et al.  Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs , 1995, Journal of virology.