Overcoming barriers to membrane protein structure determination

After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ∼30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.

[1]  B. Byrne,et al.  Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures. , 2008, Microbial cell factories.

[2]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[3]  L. Gustafsson,et al.  Design of improved membrane protein production experiments: quantitation of the host response. , 2005, Protein science : a publication of the Protein Society.

[4]  P. Akamine,et al.  Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. , 2008, Methods.

[5]  B. L. de Groot,et al.  The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and X-ray crystallography. , 2003, Journal of molecular biology.

[6]  N. Isaacs,et al.  Brominated lipids identify lipid binding sites on the surface of the reaction center from Rhodobacter sphaeroides. , 2007, Biochemistry.

[7]  Yves Van de Peer,et al.  Genome sequence of the recombinant protein production host Pichia pastoris , 2009, Nature Biotechnology.

[8]  S. Subramaniam,et al.  Protein Conformational Changes in the Bacteriorhodopsin Photocycle: Comparison of Findings from Electron and X-Ray Crystallographic Analyses , 2009, PloS one.

[9]  Michael Sauer,et al.  Stress in recombinant protein producing yeasts. , 2004, Journal of biotechnology.

[10]  Dirk-Jan Slotboom,et al.  Lactococcus lactis as host for overproduction of functional membrane proteins. , 2003, Biochimica et biophysica acta.

[11]  R. Grisshammer,et al.  Purification and characterization of the human adenosine A2a receptor functionally expressed in Escherichia coli , 2002 .

[12]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[13]  Christopher G Tate,et al.  Development and crystallization of a minimal thermostabilised G protein-coupled receptor. , 2009, Protein expression and purification.

[14]  S. Iwata,et al.  The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1 , 2010, Journal of Synchrotron Radiation.

[15]  Sebastien Petitdemange,et al.  Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. , 2010, Acta crystallographica. Section D, Biological crystallography.

[16]  Eric R Geertsma,et al.  Quality control of overexpressed membrane proteins , 2008, Proceedings of the National Academy of Sciences.

[17]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[18]  J. Bowie,et al.  Changing single side-chains can greatly enhance the resistance of a membrane protein to irreversible inactivation. , 1999, Journal of molecular biology.

[19]  Samuel Wagner,et al.  Tuning Escherichia coli for membrane protein overexpression , 2008, Proceedings of the National Academy of Sciences.

[20]  Yigong Shi,et al.  Structure and Mechanism of an Amino Acid Antiporter , 2009, Science.

[21]  N. Bonander,et al.  Relieving the first bottleneck in the drug discovery pipeline: using array technologies to rationalize membrane protein production , 2009, Expert review of proteomics.

[22]  B. Poolman,et al.  The structural basis for peptide selection by the transport receptor OppA , 2009, The EMBO journal.

[23]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[24]  S. Baldwin,et al.  The Nucleobase-Cation-Symport-1 Family of Membrane Transport Proteins , 2010 .

[25]  B. Poolman,et al.  Selenomethionine incorporation in proteins expressed in Lactococcus lactis , 2009, Protein science : a publication of the Protein Society.

[26]  Shunsuke Yajima,et al.  Structure and Molecular Mechanism of a Nucleobase–Cation–Symport-1 Family Transporter , 2008, Science.

[27]  C. Tate,et al.  Engineering G protein-coupled receptors to facilitate their structure determination. , 2009, Current opinion in structural biology.

[28]  E. Gouaux,et al.  Structure and Mechanism of a Na+-Independent Amino Acid Transporter , 2009, Science.

[29]  Yoko Shibata,et al.  Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor , 2008, Proceedings of the National Academy of Sciences.

[30]  R. Grisshammer,et al.  Purification and characterization of the human adenosine A(2a) receptor functionally expressed in Escherichia coli. , 2002, European journal of biochemistry.

[31]  R. Dutzler,et al.  Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel , 2009, Nature.

[32]  G. Friso,et al.  A scalable, GFP‐based pipeline for membrane protein overexpression screening and purification , 2005, Protein science : a publication of the Protein Society.

[33]  M. Bouvier,et al.  Export from the Endoplasmic Reticulum Represents the Limiting Step in the Maturation and Cell Surface Expression of the Human δ Opioid Receptor* , 2000, The Journal of Biological Chemistry.

[34]  N. Bonander,et al.  Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield , 2009, Microbial cell factories.

[35]  C. Tate,et al.  Overexpression of mammalian integral membrane proteins for structural studies , 2001, FEBS letters.

[36]  B. Poolman,et al.  Production of membrane proteins in Escherichia coli and Lactococcus lactis. , 2010, Methods in molecular biology.

[37]  Yoko Shibata,et al.  Thermostabilisation of the neurotensin receptor NTS1 , 2009, Journal of molecular biology.

[38]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[39]  Stephen G. Aller Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding , 2010 .

[40]  P. Nissen,et al.  Crystal structure of the sodium–potassium pump , 2007, Nature.

[41]  So Iwata,et al.  Molecular Basis of Alternating Access Membrane Transport by the Sodium-hydantoin Transporter Mhp1 , 2011 .

[42]  C. Tate Practical considerations of membrane protein instability during purification and crystallisation. , 2010, Methods in molecular biology.

[43]  R. Stevens,et al.  High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. , 2007, Science.

[44]  E. Campbell,et al.  Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel , 2005, Science.

[45]  J U Bowie,et al.  Building a Thermostable Membrane Protein* , 2000, The Journal of Biological Chemistry.

[46]  Tsutomu Kouyama,et al.  Crystal structure of squid rhodopsin , 2008, Nature.

[47]  Karl Edman,et al.  Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. , 2002, Biochimica et biophysica acta.

[48]  D. Nietlispach,et al.  Structure determination of the seven-helical transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy , 2010, Nature Structural &Molecular Biology.

[49]  C. Tate,et al.  Calnexin co-expression and the use of weaker promoters increase the expression of correctly assembled Shaker potassium channel in insect cells. , 2003, Biochimica et biophysica acta.

[50]  C. Toyoshima,et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution , 2009, Nature.

[51]  R. Abagyan,et al.  Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. , 2010, Journal of the American Chemical Society.

[52]  Yoko Shibata,et al.  Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form , 2008, Proceedings of the National Academy of Sciences.

[53]  Michael Levitt,et al.  Super-resolution biomolecular crystallography with low-resolution data , 2010, Nature.

[54]  H. Michel,et al.  Comparative analysis and “expression space” coverage of the production of prokaryotic membrane proteins for structural genomics , 2006, Protein science : a publication of the Protein Society.

[55]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[56]  R. Ujwal,et al.  Fluorescence Detection of Heavy Atom Labeling (FD-HAL): a rapid method for identifying covalently modified cysteine residues by phasing atoms. , 2010, Journal of structural biology.

[57]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[58]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[59]  K. L. Martinez,et al.  FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[61]  C. Oxvig,et al.  The structural basis of calcium transport by the calcium pump , 2007, Nature.

[62]  H. Vogel,et al.  Visualizing odorant receptor trafficking in living cells down to the single-molecule level , 2006, Proceedings of the National Academy of Sciences.

[63]  O. Guenat,et al.  Probing the function of ionotropic and G protein-coupled receptors in surface-confined membranes. , 2008, Methods.

[64]  B. Poolman,et al.  Amino Acid Accumulation Limits the Overexpression of Proteins in Lactococcus lactis , 2010, PloS one.

[65]  C. Vonrhein,et al.  Molecular basis of transport and regulation in the Na+/betaine symporter BetP , 2009, Nature.

[66]  C. Tate,et al.  Overexpression of integral membrane proteins for structural studies , 1995, Quarterly Reviews of Biophysics.

[67]  J. Tucker,et al.  Purification of a rat neurotensin receptor expressed in Escherichia coli. , 1996, The Biochemical journal.

[68]  Gebhard F. X. Schertler,et al.  Protein crystallography with a micrometre-sized synchrotron-radiation beam , 2008, Acta crystallographica. Section D, Biological crystallography.

[69]  C. Tate,et al.  Transferability of thermostabilizing mutations between β-adrenergic receptors , 2009, Molecular membrane biology.

[70]  G. von Heijne,et al.  High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae , 2007, Proceedings of the National Academy of Sciences.

[71]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[72]  K. V. van Wijk,et al.  Consequences of membrane protein overexpression in Escherichia coli , 2007 .

[73]  Eric Gouaux,et al.  Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. , 2006, Structure.

[74]  D. Cascio,et al.  The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar Symport , 2008, Science.

[75]  L. Gustafsson,et al.  Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory , 2010, Microbial cell factories.

[76]  D. Drew,et al.  Optimization of membrane protein overexpression and purification using GFP fusions , 2006, Nature Methods.

[77]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[78]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[79]  H. Jayaram,et al.  Structure of a Prokaryotic Virtual Proton Pump at 3.2 Å Resolution , 2009, Nature.

[80]  Roberto Dinapoli,et al.  PILATUS: A single photon counting pixel detector for X-ray applications , 2009 .

[81]  B. Poolman,et al.  Evolved Lactococcus lactis strains for enhanced expression of recombinant membrane proteins. , 2010, Journal of molecular biology.

[82]  H. Michel,et al.  Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase , 1995, Nature Structural Biology.

[83]  R. Kopito,et al.  Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. , 1994, The Journal of biological chemistry.

[84]  R. Neutze,et al.  Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction , 2010, Science.

[85]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[86]  M. Baker Making membrane proteins for structures: a trillion tiny tweaks , 2010, Nature Methods.

[87]  K. Locher,et al.  Structural Basis of Trans-Inhibition in a Molybdate/Tungstate ABC Transporter , 2008, Science.

[88]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[89]  C. Tate,et al.  Molecular Chaperones Stimulate the Functional Expression of the Cocaine-sensitive Serotonin Transporter* , 1999, The Journal of Biological Chemistry.

[90]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[91]  A. Milon,et al.  Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification , 2003, Cellular and Molecular Life Sciences CMLS.

[92]  Michael Wulff,et al.  Structural dynamics of light-driven proton pumps. , 2009, Structure.

[93]  P. Butler,et al.  Yeast mitochondrial ADP/ATP carriers are monomeric in detergents , 2006, Proceedings of the National Academy of Sciences.