Interactive Leakage Chain Rule for Quantum Min-entropy

The leakage chain rule for quantum min-entropy quantifies the change of min-entropy when one party gets additional leakage about the information source. Herein we provide an interactive version that quantifies the change of min-entropy between two parties, who share an initial classical-quantum state and are allowed to run a two-party protocol. As an application, we prove new versions of lower bounds on the complexity of quantum communication of classical information.

[1]  Yael Tauman Kalai,et al.  Memory Delegation , 2011, CRYPTO.

[2]  Xiaodi Wu,et al.  Computational Notions of Quantum Min-Entropy , 2017, ArXiv.

[3]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[4]  Zvika Brakerski,et al.  On Quantum Advantage in Information Theoretic Single-Server PIR , 2019, IACR Cryptol. ePrint Arch..

[5]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[6]  Leonid Reyzin,et al.  A Unified Approach to Deterministic Encryption: New Constructions and a Connection to Computational Entropy , 2012, TCC.

[7]  Ashwin Nayak,et al.  Limits on the ability of quantum states to convey classical messages , 2006, JACM.

[8]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[9]  Michael Newman,et al.  Further Limitations on Information-Theoretically Secure Quantum Homomorphic Encryption , 2018, 1809.08719.

[10]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[11]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[12]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[13]  Krzysztof Pietrzak,et al.  How to Fake Auxiliary Input , 2014, IACR Cryptol. ePrint Arch..

[14]  Kai-Min Chung,et al.  From Weak to Strong Zero-Knowledge and Applications , 2015, TCC.

[15]  Louis Salvail,et al.  Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries , 2010, CRYPTO.

[16]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Michael Newman,et al.  Limitations on transversal computation through quantum homomorphic encryption , 2017, Quantum Inf. Comput..

[18]  Ämin Baumeler,et al.  Quantum Private Information Retrieval has Linear Communication Complexity , 2013, Journal of Cryptology.

[19]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[20]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.

[21]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[22]  Alain Tapp,et al.  Quantum Entanglement and the Communication Complexity of the Inner Product Function , 1997, QCQC.

[23]  Madhur Tulsiani,et al.  Dense Subsets of Pseudorandom Sets , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[24]  Severin Winkler,et al.  Impossibility of growing quantum bit commitments. , 2011, Physical review letters.

[25]  Stefan Dziembowski,et al.  Leakage-Resilient Cryptography , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[27]  Kai-Min Chung,et al.  On statistically-secure quantum homomorphic encryption , 2017, Quantum Inf. Comput..

[28]  Craig Gentry,et al.  Separating succinct non-interactive arguments from all falsifiable assumptions , 2011, IACR Cryptol. ePrint Arch..

[29]  Frédéric Dupuis,et al.  Quantum Entropic Security and Approximate Quantum Encryption , 2007, IEEE Transactions on Information Theory.