A Novel Approach to Generate Face Biometric Template Using Binary Discriminating Analysis

In identity management system, commonly used biometric recognition system needs attention towards issue of biometric template protection as far as more reliable solution is concerned. In view of this biometric template protection algorithm should satisfy security, discriminability and cancelability. As no single template protection method is capable of satisfying the basic requirements, a novel technique for face biometric template generation and protection is proposed. The novel approach is proposed to provide security and accuracy in new user enrolment as well as verification process. This novel technique takes advantage of both the hybrid approach and the binary discriminant analysis algorithm. This algorithm is designed on the basis of random projection, binary discriminant analysis and fuzzy commitment scheme. Three publicly available benchmark face databases (FERET, FRGC, CMU-PIE) are used for evaluation. The proposed novel technique enhances the discriminability and recognition accuracy in terms of matching score of the face images and provides high security. This paper discusses the corresponding results.

[1]  Nalini K. Ratha,et al.  Cancelable Biometrics: A Case Study in Fingerprints , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[2]  Andrew Beng Jin Teoh,et al.  Biohashing: two factor authentication featuring fingerprint data and tokenised random number , 2004, Pattern Recognit..

[3]  Anil K. Jain,et al.  Securing fingerprint template: Fuzzy vault with minutiae descriptors , 2008, 2008 19th International Conference on Pattern Recognition.

[4]  Yair Frankel,et al.  On enabling secure applications through off-line biometric identification , 1998, Proceedings. 1998 IEEE Symposium on Security and Privacy (Cat. No.98CB36186).

[5]  Yongjin Wang,et al.  Face Based Biometric Authentication with Changeable and Privacy Preservable Templates , 2007, 2007 Biometrics Symposium.

[6]  Andrew Beng Jin Teoh,et al.  Biometric hash: high-confidence face recognition , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  Andrew Beng Jin Teoh,et al.  Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  A. Adler,et al.  Images can be regenerated from quantized biometric match score data , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[9]  Pong C. Yuen,et al.  A hybrid approach for face template protection , 2008, SPIE Defense + Commercial Sensing.

[10]  Pong C. Yuen,et al.  Selection of Distinguish Points for Class Distribution Preserving Transform for Biometric Template Protection , 2007, ICB.

[11]  Pong C. Yuen,et al.  Class-Distribution Preserving Transform for Face Biometric Data Security , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[12]  Anil K. Jain,et al.  Biometric Template Security , 2008, EURASIP J. Adv. Signal Process..

[13]  Anton H. M. Akkermans,et al.  Face recognition with renewable and privacy preserving binary templates , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[14]  Venu Govindaraju,et al.  Symmetric Hash Functions for Fingerprint Minutiae , 2005, ICAPR.

[15]  Anil K. Jain,et al.  A hybrid biometric cryptosystem for securing fingerprint minutiae templates , 2010, Pattern Recognit. Lett..

[16]  Andreas Uhl,et al.  A survey on biometric cryptosystems and cancelable biometrics , 2011, EURASIP J. Inf. Secur..

[17]  Nalini K. Ratha,et al.  Generating Cancelable Fingerprint Templates , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Pim Tuyls,et al.  Capacity and Examples of Template-Protecting Biometric Authentication Systems , 2004, ECCV Workshop BioAW.

[19]  Nalini K. Ratha,et al.  Enhancing security and privacy in biometrics-based authentication systems , 2001, IBM Syst. J..

[20]  Ross J. Anderson,et al.  Combining cryptography with biometrics effectively , 2005 .

[21]  Nasir D. Memon,et al.  A secure biometric authentication scheme based on robust hashing , 2005, MM&Sec '05.

[22]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[23]  Andy Adler,et al.  Vulnerabilities in Biometric Encryption Systems , 2005, AVBPA.

[24]  Norimichi Tsumura,et al.  BioEncoding: A Reliable Tokenless Cancelable Biometrics Scheme for Protecting IrisCodes , 2010, IEICE Trans. Inf. Syst..

[25]  Reihaneh Safavi-Naini,et al.  Cancelable Key-Based Fingerprint Templates , 2005, ACISP.

[26]  David J. Kriegman,et al.  Recognition using class specific linear projection , 1997 .

[27]  Qi Li,et al.  Cryptographic key generation from voice , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[28]  Anil K. Jain,et al.  Biometric cryptosystems: issues and challenges , 2004, Proceedings of the IEEE.

[29]  L. O'Gorman,et al.  Comparing passwords, tokens, and biometrics for user authentication , 2003, Proceedings of the IEEE.

[30]  Pong C. Yuen,et al.  Binary Discriminant Analysis for Face Template Protection , 2010, 2010 20th International Conference on Pattern Recognition.

[31]  Pong C. Yuen,et al.  A Hybrid Approach for Generating Secure and Discriminating Face Template , 2010, IEEE Transactions on Information Forensics and Security.

[32]  Madhu Sudan,et al.  A Fuzzy Vault Scheme , 2006, Des. Codes Cryptogr..

[33]  Ee-Chien Chang,et al.  Robust Extraction of Secret Bits from Minutiae , 2007, ICB.

[34]  David Chek Ling Ngo,et al.  Computation of Cryptographic Keys from Face Biometrics , 2003, Communications and Multimedia Security.

[35]  Michael K. Reiter,et al.  Password hardening based on keystroke dynamics , 1999, CCS '99.

[36]  Suela Kodra Fuzzy extractors : How to generate strong keys from biometrics and other noisy data , 2015 .