Multi-Disciplinary Techniques for Understanding Time-Varying Space-Based Imagery.

Abstract : This project combined pattern recognition, image understanding and artificial intelligence techniques for space-based image processing. A special feature of this effort is the attempt to use both optical and digital processing methods. Subpixel target detection and tracking algorithms are analyzed and conclusions are presented regarding their suitability for this application. We also present an adaptive subpixel delay estimation method using Group-Delay Functions. Image understanding techniques for three dimensional scene interpretation are also discussed.

[1]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[2]  Larry S. Davis,et al.  Texture classification by local rank correlation , 1985, Comput. Vis. Graph. Image Process..

[3]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[4]  David Casasent,et al.  Hierarchical Fisher And Moment-Based Pattern Recognition , 1984, Optics & Photonics.

[5]  H. M. Stark,et al.  Optical information processing , 1978 .

[6]  Vinod Sharma,et al.  Feature extractors for distortion- invariant robot vision , 1984 .

[7]  Wen-Thong Chang,et al.  Chord Distributions In Pattern Recognition: Distortion Invariance And Parameter Estimation , 1985, Other Conferences.

[8]  Martin Herman,et al.  Representation and Incremental Construction of a Three-Dimensional Scene Model , 1986 .

[9]  Gerald J. Agin Representation and description of curved objects , 1972 .

[10]  D. Casasent,et al.  Coherent optical pattern recognition , 1979, Proceedings of the IEEE.

[11]  Martin Herman,et al.  Generating detailed scene descriptions from range images , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[12]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[13]  C. Zheng,et al.  ; 0 ; , 1951 .

[14]  Edward L. Jenkins,et al.  Synthetic Discriminant Functions For Target Correlation , 1987, Other Conferences.

[15]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[16]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  R. Dreisbach,et al.  STANFORD UNIVERSITY. , 1914, Science.

[18]  W E Grimson,et al.  A computer implementation of a theory of human stereo vision. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  Richard O. Duda,et al.  Use of Range and Reflectance Data to Find Planar Surface Regions , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Takeo Kanade,et al.  Autonomous scene description with range imagery , 1985, Comput. Vis. Graph. Image Process..

[21]  David Casasent Hybrid Optical/Digital Image Pattern Recognition: A Review , 1985, Photonics West - Lasers and Applications in Science and Engineering.

[22]  Thomas O. Binford,et al.  Depth from Edge and Intensity Based Stereo , 1981, IJCAI.

[23]  Wen-Thong Chang,et al.  Sdf Control Of Correlation Plane Structure For 3-D Object Representation And Recognition , 1984, Optics & Photonics.