PLS model building with missing data: New algorithms and a comparative study
暂无分享,去创建一个
Abel Folch-Fortuny | Alberto Ferrer | Francisco Arteaga | A. Ferrer | A. Folch-Fortuny | Francisco Arteaga
[1] Abel Folch-Fortuny,et al. Assessment of maximum likelihood PCA missing data imputation , 2016 .
[2] P. A. Taylor,et al. Missing data methods in PCA and PLS: Score calculations with incomplete observations , 1996 .
[3] Lorenz T. Biegler,et al. An optimization‐based undeflated PLS (OUPLS) method to handle missing data in the training set , 2014 .
[4] Abel Folch-Fortuny,et al. Missing Data Imputation Toolbox for MATLAB , 2016 .
[5] F. Arteaga. 3.06 – Missing Data , 2009 .
[6] Alberto Ferrer,et al. Framework for regression‐based missing data imputation methods in on‐line MSPC , 2005 .
[7] W J Krzanowski,et al. Missing value imputation in multivariate data using the singular value decomposition of a matrix , 1988 .
[8] R. Manne,et al. Missing values in principal component analysis , 1998 .
[9] B. Kowalski,et al. Partial least-squares regression: a tutorial , 1986 .
[10] A. Ferrer,et al. Dealing with missing data in MSPC: several methods, different interpretations, some examples , 2002 .
[11] A. Ferrer,et al. PCA model building with missing data: New proposals and a comparative study , 2015 .
[12] Gene H. Golub,et al. Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..
[13] Jesús Picó,et al. Bilinear modelling of batch processes. Part II: a comparison of PLS soft‐sensors , 2008 .
[14] Alberto Ferrer,et al. Calibration transfer between NIR spectrometers: New proposals and a comparative study , 2017 .
[15] Alberto Ferrer,et al. Building covariance matrices with the desired structure , 2013 .
[16] Hugo Kubinyi,et al. Evolutionary variable selection in regression and PLS analyses , 1996 .
[17] Steven D. Brown,et al. Comparison of five iterative imputation methods for multivariate classification , 2013 .
[18] Anders Hald,et al. Statistical Theory with Engineering Applications , 1952 .
[19] Alberto Ferrer,et al. How to simulate normal data sets with the desired correlation structure , 2010 .
[20] José Camacho,et al. On the use of the observation‐wise k‐fold operation in PCA cross‐validation , 2015 .
[21] S. A. bano C. D. nn W. I. i Wold,et al. Pattern recognition: finding and using regularities in multivariate data Food research, how to relate sets of measurements or observations to each other , 1983 .
[22] Abel Folch-Fortuny,et al. Metabolic Flux Understanding of Pichia pastoris Grown on Heterogenous , 2014 .
[23] David E. Booth,et al. Analysis of Incomplete Multivariate Data , 2000, Technometrics.
[24] T. Schneider. Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .
[25] Hans-Heinrich Hübbe. Gesund im Job , 2016 .
[26] Patrick Royston,et al. Multiple imputation using chained equations: Issues and guidance for practice , 2011, Statistics in medicine.
[27] Rodrigo López‐Negrete de la Fuente,et al. An efficient nonlinear programming strategy for PCA models with incomplete data sets , 2010 .
[28] Kristin L. Sainani,et al. Dealing with missing data , 2002 .
[29] John L.P. Thompson,et al. Missing data , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.