An efficient voxel-based visualization system from an implicit skeletal surface characterization

This paper presents a new algorithm of volume rendering based on a dual representation of data. The algorithm improves both the image generation speed and its quality. Two shape descriptors are used to characterize the object: a Euclidean distance transform (EDT) and a digital Euclidean skeleton. The EDT is used at one point in time to accelerate the image generation and compute the skeleton of the shape, whilst the skeleton is used as an initialization of the processing of the implicit surface. The goal is to build an interactive system of visualization for the analysis of volumetric data, either in the setting of a qualitative exploration or as a guide for qualitative measurements. The speed of treatment together with good visualization should give the feasibility to achieve a 3D survey of a natural object in an interactive manner. The method has been successfully applied to both synthetic and real data. Copyright # 2000 John Wiley & Sons, Ltd.

[1]  Marc Levoy,et al.  A hybrid ray tracer for rendering polygon and volume data , 1990, IEEE Computer Graphics and Applications.

[2]  Dominique Attali Squelettes et graphes de Voronoï 2D et 3D. (2D and 3D skeletons and Voronoi graphs) , 1995 .

[3]  Ingela Nyström,et al.  Efficient shape representation by minimizing the set of centres of maximal discs/spheres , 1997, Pattern Recognit. Lett..

[4]  John C. Hart,et al.  A Lipschitz method for accelerated volume rendering , 1994, VVS '94.

[5]  Sabine Coquillart,et al.  3D Reconstruction of Complex Polyhedral Shapes from Contours using a Simplified Generalized Voronoi Diagram , 1996, Comput. Graph. Forum.

[6]  Arnold W. M. Smeulders,et al.  Fast volume render techniques for interactive analysis , 1997, The Visual Computer.

[7]  John C. Hart,et al.  Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces , 1996, The Visual Computer.

[8]  Devendra Kalra,et al.  Guaranteed ray intersections with implicit surfaces , 1989, SIGGRAPH.

[9]  Marie-Paule Cani,et al.  Skeletal Reconstruction of Branching Shapes , 1996, Comput. Graph. Forum.

[10]  James F. Blinn,et al.  A generalization of algebraic surface drawing , 1982, SIGGRAPH.

[11]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[12]  Laurent Lucas,et al.  A new unsupervised cube-based algorithm for iso-surface generation , 1997, Comput. Networks ISDN Syst..

[13]  Alain Fournier,et al.  Volume models for volumetric data , 1994, Computer.

[14]  Grégoire Malandain,et al.  Squelettes euclidiens d'objets discrets n-dimensionnels , 1996 .

[15]  Eric Galin Métamorphose et visualisation de blobs à squelettes , 1997 .

[16]  John Hart,et al.  Ray Tracing Implicit Surfaces , 1993 .

[17]  Marie-Paule Cani,et al.  Automatic Reconstruction of Unstructured 3D Data: Combining a Medial Axis and Implicit Surfaces , 1995, Comput. Graph. Forum.

[18]  Jun-ichiro Toriwaki,et al.  Reverse Distance Transformation and Skeletons Based upon the Euclidean Metric for n -Dimensional Digital Binary Pictures , 1994 .

[19]  Laurent Lucas Reconstruction, visualisation et quantification tridimensionnelles : application a la microscopie confocale , 1995 .

[20]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[21]  Jun-ichiro Toriwaki,et al.  New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications , 1994, Pattern Recognit..