Modelling borehole wave signatures in elastic and poroelastic media with spectral method

Borehole sonic measurements are an important tool to characterize formation and completion properties of hydrocarbon or water reservoirs. Such measurements can provide direct information about rock physical parameters such as permeability or elastic moduli. These properties are obtained from guided waves propagating along boreholes. The so called tube wave or Stoneley wave is a symmetric mode which compresses the fluid column leading to a piston like motion. If the medium around the borehole wall is permeable, the radial expansion of the fluid column will result in fluid flow across the borehole wall. This results in a sensitivity of the tube wave signature to the permeability of the surrounding formation which manifests itself in a characteristic dispersion and attenuation of the tube wave. Information about the permeability of the surrounding formation provides essential knowledge for reservoir characterization. In addition to the traditional method of using tube wave signatures for formation permeability estimations, the same approach may be used for production monitoring. In sand reservoirs a complicated borehole completion is installed during the production phase for the purpose of con-

[1]  J. Berryman,et al.  Dispersion of waves in porous cylinders with patchy saturation: formulation and torsional waves. , 2004, The Journal of the Acoustical Society of America.

[2]  Richard V. Craster,et al.  Spectral methods for modelling guided waves in elastic media , 2004 .

[3]  J. Allard,et al.  Biot waves in layered media , 1986 .

[4]  D. Smeulders,et al.  Guided wave modes in porous cylinders: Theory. , 2007, The Journal of the Acoustical Society of America.

[5]  R. Davies A critical study of the Hopkinson pressure bar , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  Guy Bonnet,et al.  Basic singular solutions for a poroelastic medium in the dynamic range , 1987 .

[7]  B. Fornberg The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .

[8]  J. White,et al.  Underground Sound: Application of Seismic Waves , 1983 .

[9]  D. Gazis Three‐Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results , 1959 .

[10]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[11]  F. Gaßmann Uber die Elastizitat poroser Medien. , 1961 .

[12]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[13]  Steven R. Pride,et al.  Electroseismic wave properties , 1996 .

[14]  Andrew N. Norris,et al.  Stoneley-wave attenuation and dispersion in permeable formations , 1989 .

[15]  B. Sinha,et al.  Radial profiling of the three formation shear moduli and its application to well completions , 2006 .

[16]  C. Chree The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Co-ordinates their Solution and Application , 1889 .

[17]  Pride,et al.  Governing equations for the coupled electromagnetics and acoustics of porous media. , 1994, Physical review. B, Condensed matter.

[18]  D. Schmitt Dipole logging in cased boreholes , 1993 .

[19]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[20]  F. Paillet,et al.  Acoustic modes of propagation in the borehole and their relationship to rock properties , 1982 .

[21]  Smaine Zeroug,et al.  Geophysical Prospecting Using Sonics and Ultrasonics , 1999 .

[22]  J. A. McFadden,et al.  Radial Vibrations of Thick‐Walled Hollow Cylinders , 1954 .

[23]  V. R. Rao,et al.  Acoustics of fluid-filled boreholes with pipe: Guided propagation and radiation , 1999 .

[24]  H. Burkhardt,et al.  Experimental evidence for the Biot-Gardner theory , 1989 .

[25]  A. Philippacopoulos Spectral Green’s Dyadic for Point Sources in Poroelastic Media , 1998 .

[26]  G. Gardner Extensional Waves in Fluid‐Saturated Porous Cylinders , 1962 .

[27]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[28]  George E. Backus,et al.  Moment Tensors and other Phenomenological Descriptions of Seismic Sources—I. Continuous Displacements , 1976 .

[29]  Darwin V. Ellis,et al.  Well Logging for Earth Scientists , 1987 .

[30]  Tobias M. Müller,et al.  Finite-difference modeling of wave propagation and diffusion in poroelastic media , 2009 .

[31]  P. Bard,et al.  Green functions and associated sources in infinite and stratified poroelastic media , 1987 .

[32]  B. Sinha,et al.  Dispersion and radial depth of investigation of borehole modes , 2004 .

[33]  D. L. Johnson,et al.  The equivalence of quasistatic flow in fluid‐saturated porous media and Biot’s slow wave in the limit of zero frequency , 1981 .

[34]  D. P. Schmitt,et al.  Shear wave logging in elastic formations , 1988 .

[35]  J. Achenbach Wave propagation in elastic solids , 1962 .

[36]  F. Karpfinger,et al.  Spectral-method algorithm for modeling dispersion of acoustic modes in elastic cylindrical structures , 2010 .

[37]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[38]  Joseph B. Keller,et al.  Wave Propagation in a Fluid‐Filled Tube , 1971 .

[39]  D. L. Johnson,et al.  Effects of an elastic membrane on tube waves in permeable formations , 1996 .

[40]  F. Karpfinger,et al.  Modeling of axisymmetric wave modes in a poroelastic cylinder using spectral method. , 2008, The Journal of the Acoustical Society of America.

[41]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[42]  A. Norris On the correspondence between poroelasticity and thermoelasticity , 1992 .

[43]  Robert B. Herrmann,et al.  A Student’s Guide to and Review of Moment Tensors , 1989 .

[44]  L. Freund,et al.  On energy radiation from seismic sources , 1981 .

[45]  G. W. Morgan,et al.  WAVE PROPAGATION THROUGH FLUID CONTAINED IN A CYLINDRICAL, ELASTIC SHELL , 1956 .

[46]  B. Gurevich,et al.  A first-order statistical smoothing approximation for the coherent wave field in random porous media , 2005 .

[47]  R. Bishop,et al.  Stress Waves in Solids , 1954, Nature.

[48]  J. Zemanek,et al.  An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder , 1962 .

[49]  J. H. Rosenbaum Synthetic microseismograms; logging in porous formations , 1974 .

[50]  W. M. Ewing,et al.  Elastic Waves in Layered Media , 2015 .

[51]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[52]  J. Rudnicki Fluid mass sources and point forces in linear elastic diffusive solids , 1986 .

[53]  Kes Heffer,et al.  Theory of linear poroelasticity with applications to geomechanics and hydrogeology , 2004 .

[54]  Andrew N. Norris,et al.  Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelastic solids , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[55]  D. Kosloff,et al.  Solution of the equations of dynamic elasticity by a Chebychev spectral method , 1990 .

[56]  D. L. Johnson,et al.  Permeability and borehole Stoneley waves: Comparison between experiment and theory , 1989 .

[57]  Tobias Malte Müller Spatiotemporal pore pressure evolution due to fluid-mass point sources in dynamic poroelasticity , 2006 .

[58]  J. Berryman Dispersion of extensional waves in fluid‐saturated porous cylinders at ultrasonic frequencies , 1983 .

[59]  Dispersion of extensional and torsional waves in porous cylinders with patchy saturation , 2002, Poromechanics II.

[60]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[61]  J. Chen Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity. Part I: Two-dimensional solution† , 1994 .

[62]  J. White Biot‐Gardner theory of extensional waves in porous rods , 1986 .

[63]  M. Biot,et al.  Generalized Theory of Acoustic Propagation in Porous Dissipative Media * , 1998 .

[64]  D. Bancroft The Velocity of Longitudinal Waves in Cylindrical Bars , 1941 .

[65]  Chuen Hon Arthur Cheng,et al.  Shear wave logging in semi‐infinite saturated porous formations , 1988 .

[66]  Andrew N. Norris,et al.  Radiation from a point source and scattering theory in a fluid-saturated porous solid , 1985 .

[67]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[68]  K. Dunn Acoustic attenuation in fluid‐saturated porous cylinders at low frequencies , 1986 .

[69]  Boris Gurevich,et al.  Interface conditions for Biot’s equations of poroelasticity , 1999 .

[70]  G. W. Morgan,et al.  Wave Propagation in a Viscous Liquid Contained in a Flexible Tube , 1954 .

[71]  Andrey Bakulin,et al.  Real-time Completion Monitoring with Acoustic Waves , 2008 .

[72]  P. Sahay,et al.  Dynamic Green's function for homogeneous and isotropic porous media , 2001 .

[73]  E. Sternberg,et al.  Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity , 1980 .

[74]  M. Schanz,et al.  Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua , 2004 .

[75]  D. Schmitt Effects of radial layering when logging in saturated porous formations , 1988 .

[76]  D. L. Johnson,et al.  Low‐frequency tube waves in permeable rocks , 1988 .

[77]  Frederick L. Paillet,et al.  Acoustic Waves in Boreholes , 1991 .

[78]  R. Wu,et al.  The elastodynamic near field , 1985 .

[79]  George C. Stierhoff Suggested reading , 1994 .

[80]  C. Chapman Fundamentals of Seismic Wave Propagation: Frontmatter , 2004 .