Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures

An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures.

[1]  N. Yamazoe,et al.  Environmental gas sensing , 1994 .

[2]  Li Zhang,et al.  Electrospun Nanofibers of ZnO−SnO2 Heterojunction with High Photocatalytic Activity , 2010 .

[3]  Peng Sun,et al.  Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres , 2013 .

[4]  Jun Liu,et al.  Ultrathin Seed-Layer for Tuning Density of ZnO Nanowire Arrays and Their Field Emission Characteristics , 2008 .

[5]  Li Liu,et al.  Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor , 2009 .

[6]  Sheikh A. Akbar,et al.  Gas Sensors Based on One Dimensional Nanostructured Metal‐Oxides: A Review , 2013 .

[7]  I-Cherng Chen,et al.  Laterally grown ZnO nanowire ethanol gas sensors , 2007 .

[8]  S. Akbar,et al.  Solid‐State Gas Sensors: A Review , 1992 .

[9]  Xinyu Xue,et al.  Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. , 2012, ACS applied materials & interfaces.

[10]  Yun Chan Kang,et al.  Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres , 2011 .

[11]  Giorgio Sberveglieri,et al.  Recent developments in semiconducting thin-film gas sensors , 1995 .

[12]  Sun-Woo Choi,et al.  Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties , 2009, Nanotechnology.

[13]  Nguyen Duc Hoa,et al.  Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance , 2012 .

[14]  Weidong Yu,et al.  Large-scale synthesis and microstructure of SnO2 nanowires coated with quantum-sized ZnO nanocrystals on a mesh substrate. , 2005, The journal of physical chemistry. B.

[15]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[16]  Ahmad Umar,et al.  Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism : Structural and optical properties , 2005 .

[17]  Hidehito Nanto,et al.  Doping effect of SnO2 on gas sensing characteristics of sputtered ZnO thin film chemical sensor , 1996 .

[18]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[19]  Fan Zhang,et al.  Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods , 2011 .

[20]  Hao Gong,et al.  Hierarchical assembly of ZnO nanostructures on SnO(2) backbone nanowires: low-temperature hydrothermal preparation and optical properties. , 2009, ACS nano.

[21]  이종무 Enhanced ethanol sensing properties of TiO2/ZnO core-shell nanorod sensors , 2013 .

[22]  Ji Haeng Yu,et al.  Current–voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zn2SnO4, SnO2/Zn2SnO4 layered-type sensors , 2001 .

[23]  Yuan Zhang,et al.  Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties , 2009 .

[24]  Michele Penza,et al.  Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications , 2009 .

[25]  Jun Zhang,et al.  Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles , 2011, Nanotechnology.

[26]  Peng Gao,et al.  α-MoO3/TiO2 core/shell nanorods: Controlled-synthesis and low-temperature gas sensing properties , 2011 .

[27]  Il-Doo Kim,et al.  Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading , 2010 .

[28]  Mohd Faizul Mohd Sabri,et al.  Catalyst free single-step fabrication of SnO2/ZnO core–shell nanostructures , 2014 .

[29]  Ahmad Umar,et al.  Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application. , 2012, Talanta.

[30]  Y. J. Chen,et al.  Synthesis and ethanol sensing properties of ZnSnO3 nanowires , 2005 .

[31]  Lirong Zheng,et al.  Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. , 2009, Inorganic chemistry.

[32]  Lijie Ci,et al.  Growth of SnO2 nanowires with uniform branched structures , 2004 .

[33]  Ying Liu,et al.  Controllable synthesis of recyclable core-shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. , 2013, Physical chemistry chemical physics : PCCP.

[34]  Sheikh A. Akbar,et al.  Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review , 2012, Sensors.

[35]  P. E. Barker,et al.  Saccharification of modified starch to maltose in a semi‐continuous counter‐current chromatographic reactor–separator (SCCR–S) , 1995 .

[36]  Xueliang Sun,et al.  Hierarchical Al2O3 nanobelts and nanowires: Morphology control and growth mechanism , 2009 .

[37]  Ning Wang,et al.  FORMATION OF ZNO NANOSTRUCTURES BY A SIMPLE WAY OF THERMAL EVAPORATION , 2002 .

[38]  Chunling Zhu,et al.  The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures , 2006 .

[39]  Sun-Woo Choi,et al.  Synthesis and Gas Sensing Properties of TiO2–ZnO Core‐Shell Nanofibers , 2009 .

[40]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[41]  Feng Liu,et al.  Fabrication and gas sensing properties of hollow core–shell SnO2/α-Fe2O3 heterogeneous structures , 2014 .

[42]  Jun Li,et al.  Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays , 2003 .

[43]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[44]  John Robertson,et al.  Band gaps and defect levels in functional oxides , 2006 .

[45]  Hui Zhang,et al.  A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature , 2006 .

[46]  Qing Peng,et al.  Fe2O3/ZnO core–shell nanorods for gas sensors , 2006 .

[47]  Masahiro Nishikawa,et al.  Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films , 1982 .

[48]  Xiangchao Zhang,et al.  Mechanosynthesis and gas-sensing properties of In2O3/SnO2 nanocomposites , 2006 .

[49]  Jun Zhang,et al.  3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors , 2011 .

[50]  Xinyu Xue,et al.  One-Step Synthesis and Gas-Sensing Characteristics of Uniformly Loaded Pt@SnO2 Nanorods , 2010 .

[51]  M. S. El-shall,et al.  Growth and Characterization of ZnO, SnO2 and ZnO/SnO2 Nanostructures from the Vapor Phase , 2008 .

[52]  Hyunsung Ko,et al.  Gas sensing properties of multiple networked GaN/WO3 core-shell nanowire sensors , 2014 .

[53]  Haijiao Zhang,et al.  Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties , 2012 .

[54]  Xuejun Zheng,et al.  Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference , 2008 .

[55]  Baoqing Zhang,et al.  Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films , 2014 .

[56]  Gyu-Tae Kim,et al.  Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires , 2010 .

[57]  Ying-Sheng Huang,et al.  Structural Features of SnO2 Nanowires and Raman Spectroscopy Analysis , 2009 .

[58]  Leo Brewer,et al.  High‐Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg , 1987 .

[59]  Ahmad Umar,et al.  Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils. , 2012, Talanta.

[60]  Tailiang Guo,et al.  Synthesis and field emission properties of needle-shaped SnO2 nanostructures with rectangular cross-section , 2009 .

[61]  Sunghoon Park,et al.  UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. , 2013, ACS applied materials & interfaces.

[62]  Yun Su,et al.  Synthesis and photoluminescence properties of SnO2/ZnO hierarchical nanostructures , 2012 .