Multipoint Observations of the June 2012 Interacting Interplanetary Flux Ropes

In this paper we perform a detailed analysis of interplanetary flux ropes observed between June~15--17, 2012 at Venus and subsequently at Earth's Lagrange L1 point, while the observation points were separated by about 0.28~AU in radial distance and $5^{\circ}$ in heliographic longitude. The flux ropes were associated with coronal mass ejections (CMEs) that erupted from the Sun on June~12--14, 2012 \textbf{(SOL2012-06-12, SOL2012-06-13, and SOL2012-06-14)}. We examine the CME--CME interactions by using \emph{in-situ} observations from the almost radially aligned spacecraft at Venus and L1, as well as by using heliospheric modelling and imagery. The June~14 CME reached the June~13 CME near the orbit of Venus and significant interaction occurred before they both reached Earth. The shock driven by the June~14 CME propagated through the June~13 CME and the two CMEs coalesced, creating the signatures of one large, coherent flux rope at L1. We discuss the origin of the strong interplanetary magnetic fields related to this sequence of events, the complexity of interpreting solar wind observations in the case of multiple interacting CMEs, and the coherence of the identified flux ropes at different observation points.

[1]  R. A. Mewaldt,et al.  The Advanced Composition Explorer , 1988 .

[2]  Xudong Sun,et al.  A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux , 2017, 1704.05097.

[3]  P. Démoulin,et al.  A new model-independent method to compute magnetic helicity in magnetic clouds , 2006 .

[4]  L. Burlaga,et al.  Magnetic clouds and force‐free fields with constant alpha , 1988 .

[5]  E. Kilpua,et al.  Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013) , 2015 .

[6]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[7]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[8]  P. Démoulin,et al.  Progressive Transformation of a Flux Rope to an ICME , 2007, 0706.2889.

[9]  Christopher T. Russell,et al.  Predictability of Dst index based upon solar wind conditions monitored inside 1 AU , 1999 .

[10]  E. Kilpua,et al.  Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations , 2017, 1701.08595.

[11]  R. Skoug,et al.  An improved expected temperature formula for identifying interplanetary coronal mass ejections , 2005 .

[12]  K. Ogilvie,et al.  The wind spacecraft and its early scientific results , 1997 .

[13]  J. Eastwood,et al.  Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft , 2018, Solar physics.

[14]  M. Janvier,et al.  Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds , 2018, Astronomy & Astrophysics.

[15]  J. Davies,et al.  The Heliospheric Imagers Onboard the STEREO Mission , 2009 .

[16]  C. Russell,et al.  Multipoint ICME encounters: Pre-STEREO and STEREO observations , 2011 .

[17]  L. Burlaga,et al.  Successive CMEs and complex ejecta , 2002 .

[18]  A. Vourlidas,et al.  Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data , 2009 .

[19]  N. Lugaz,et al.  The Interaction of Successive Coronal Mass Ejections: A Review , 2016, 1612.02398.

[20]  A. Vourlidas,et al.  How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs , 2012, 1207.1599.

[21]  J. Qiu,et al.  Modeling and Measuring the Flux Reconnected and Ejected by the Two-Ribbon Flare/CME Event on 7 November 2004 , 2007 .

[22]  M. Velli,et al.  A MODEL FOR MAGNETICALLY COUPLED SYMPATHETIC ERUPTIONS , 2011, 1108.2069.

[23]  J. Phillips,et al.  Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections , 1991 .

[24]  U. Michigan,et al.  THE INTERACTION OF TWO CORONAL MASS EJECTIONS: INFLUENCE OF RELATIVE ORIENTATION , 2013, 1309.2210.

[25]  J P Eastwood,et al.  The Economic Impact of Space Weather: Where Do We Stand? , 2017, Risk analysis : an official publication of the Society for Risk Analysis.

[26]  S. Poedts,et al.  Observation-based modelling of magnetised coronal mass ejections with EUHFORIA , 2019, Astronomy & Astrophysics.

[27]  G. Gloeckler,et al.  Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft , 1998 .

[28]  M. Maggi,et al.  The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission , 2007 .

[29]  S. Poedts,et al.  The Magnetic Morphology of Magnetic Clouds: Multi-spacecraft Investigation of Twisted and Writhed Coronal Mass Ejections , 2019, The Astrophysical Journal.

[30]  M. Berger Magnetic Helicity Conservation , 2005 .

[31]  R. W. Suey,et al.  Significance criteria for variance matrix applications , 1972 .

[32]  P. Démoulin,et al.  Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU , 2015, 1503.06128.

[33]  T. Zurbuchen,et al.  In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections , 2006 .

[34]  Norbert Seehafer,et al.  Electric current helicity in the solar atmosphere , 1990 .

[35]  R. Trines,et al.  ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY , 2013 .

[36]  H. Koskinen,et al.  Grad–Shafranov Reconstruction of Magnetic Clouds: Overview and Improvements , 2011, 1108.1678.

[37]  N. Gopalswamy,et al.  Estimation of Reconnection Flux Using Post-eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU , 2017, 1701.01943.

[38]  A. Vourlidas,et al.  Modeling of Flux Rope Coronal Mass Ejections , 2006 .

[39]  Olli Törmänen Laser communication concept for space weather forecasting CubeSat fleet mission , 2016 .

[40]  James Chen Physics of erupting solar flux ropes: Coronal mass ejections (CMEs)—Recent advances in theory and observation , 2017 .

[41]  Y. Liu,et al.  Geoeffective Properties of Solar Transients and Stream Interaction Regions , 2017 .

[42]  I. Richardson,et al.  Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies , 2004 .

[43]  A. Galvin,et al.  On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 au , 2018, The Astrophysical Journal.

[44]  C. Farrugia,et al.  Evolutionary signatures in complex ejecta and their driven shocks , 2004 .

[45]  A. Mavretic,et al.  SWE, a comprehensive plasma instrument for the WIND spacecraft , 1995 .

[46]  J. Richardson,et al.  ICMES at very large distances , 2006 .

[47]  C. Russell,et al.  Venus Express observations of an atypically distant bow shock during the passage of an interplanetary coronal mass ejection , 2008 .

[48]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[49]  Charles J. Farrugia,et al.  Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections , 2014, Nature Communications.

[50]  Richard R. Fisher,et al.  Space Weather Diamond: a four spacecraft monitoring system , 2000 .

[51]  S. Poedts,et al.  EUHFORIA: European heliospheric forecasting information asset , 2018 .

[52]  N. Srivastava,et al.  MORPHOLOGICAL AND KINEMATIC EVOLUTION OF THREE INTERACTING CORONAL MASS EJECTIONS OF 2011 FEBRUARY 13–15 , 2014, 1408.4604.

[53]  C. Russell,et al.  Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation , 2012 .

[54]  R. Lepping,et al.  Estimated errors in magnetic cloud model fit parameters with force‐free cylindrically symmetric assumptions , 2003 .

[55]  H. Koskinen,et al.  Variability of magnetospheric storms driven by different solar wind perturbations , 2002 .

[56]  S. Poedts,et al.  The evolution of coronal mass ejections in the inner heliosphere: Implementing the spheromak model with EUHFORIA , 2019, Astronomy & Astrophysics.

[57]  L. Driel-Gesztelyi,et al.  Transient Coronal Sigmoids and Rotating Erupting Flux Ropes , 2007 .

[58]  S. Poedts,et al.  Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass Ejections , 2012, 1209.6394.

[59]  J. Gosling,et al.  Magnetic clouds at sector boundaries , 1998 .

[60]  H. Koskinen,et al.  Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 , 2005 .

[61]  I. Richardson,et al.  Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds , 1997 .

[62]  Qiang Hu,et al.  Reconstruction of magnetic clouds in the solar wind: Orientations and configurations , 2002 .

[63]  I. Richardson,et al.  Cosmic ray decreases and solar wind disturbances during late October 1989 , 1995 .

[64]  M. Lockwood,et al.  Coronal mass ejections are not coherent magnetohydrodynamic structures , 2017, Scientific Reports.

[65]  L. Woltjer,et al.  A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[66]  W. Feldman,et al.  Plasma properties of driver gas following interplanetary shocks observed by ISEE-3 , 1982 .

[67]  A. Meskers,et al.  A Space weather information service based upon remote and in-situ measurements of coronal mass ejections heading for Earth - A concept mission consisting of six spacecraft in a heliocentric orbit at 0.72 AU , 2015, 1502.01846.

[68]  W. Thompson Coordinate systems for solar image data , 2006 .

[69]  M. Temmer,et al.  Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source , 2007 .

[70]  J. Qiu,et al.  Evolution of a Magnetic Flux Rope toward Eruption , 2018, The Astrophysical Journal.

[71]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[72]  F. Hoyle,et al.  On the Origin of Solar Flares , 1960 .

[73]  S. McKenna-Lawlor,et al.  The LION instrument on SOHO and its scientific objectives , 1997 .

[74]  J. Gosling,et al.  Counterstreaming electrons in magnetic clouds , 2000 .

[75]  J. Freeman,et al.  Solar wind proton temperature‐velocity relationship , 1986 .

[76]  B. Anderson,et al.  Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory , 2017, Space weather : the international journal of research & applications.

[77]  B. Lynch,et al.  SYMPATHETIC MAGNETIC BREAKOUT CORONAL MASS EJECTIONS FROM PSEUDOSTREAMERS , 2012, 1212.6677.

[78]  G. Lapenta,et al.  Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS , 2015, 1503.06135.

[79]  L. Burlaga,et al.  Global Configuration of a Magnetic Cloud , 2013 .

[80]  S. Wu,et al.  Evolution of fast and slow shock interactions in the inner heliosphere , 2004 .

[81]  Jie Zhang,et al.  Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005 , 2007 .

[82]  J. Sauvaud,et al.  Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex , 2010 .

[83]  Christopher T. Russell,et al.  Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 , 2006 .

[84]  Andrea Accomazzo,et al.  Venus Express—The first European mission to Venus , 2005 .

[85]  V. Bothmer,et al.  The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions , 2004 .

[86]  Jie Zhang,et al.  Observational Study of an Earth-affecting Problematic ICME from STEREO , 2018, The Astrophysical Journal.

[87]  M. Owens The Formation of Large-Scale Current Sheets within Magnetic Clouds , 2009 .

[88]  C. J. Wolfson,et al.  Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .

[89]  C. Owen,et al.  Investigating the observational signatures of magnetic cloud substructure , 2011 .

[90]  J. Luhmann,et al.  Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection , 2010 .

[91]  D. Baker,et al.  Bidirectional solar wind electron heat flux events , 1987 .

[92]  H. Koskinen,et al.  Coronal mass ejections and their sheath regions in interplanetary space , 2017, Living Reviews in Solar Physics.

[93]  Dejin Wu,et al.  Observations on a Series of Merging Magnetic Flux Ropes Within an Interplanetary Coronal Mass Ejection , 2018, Geophysical Research Letters.

[94]  L. J. Cahill,et al.  Magnetopause structure and attitude from Explorer 12 observations. , 1967 .

[95]  L. Burlaga,et al.  Interplanetary magnetic clouds at 1 AU , 1982 .

[96]  Jean-Pierre Lebreton,et al.  Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express , 2006 .

[97]  Y. Moon,et al.  Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model , 2013 .

[98]  L. Driel-Gesztelyi,et al.  An Observationally Constrained Model of a Flux Rope that Formed in the Solar Corona , 2018, 1802.07965.

[99]  A. Vourlidas,et al.  Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations , 2018 .

[100]  P. Cargill,et al.  A numerical study of two interacting coronal mass ejections , 2004 .

[101]  Edmond C. Roelof,et al.  Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4 , 2008 .

[102]  B. Anderson,et al.  MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE , 2012, 1209.2866.

[103]  P. Démoulin,et al.  Estimation of the bias of the Minimum Variance technique in the determination of magnetic clouds global quantities and orientation , 2007 .

[104]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[105]  Angelos Vourlidas,et al.  Multi-viewpoint Coronal Mass Ejection Catalog Based on STEREO COR2 Observations , 2017 .

[106]  Y. Lin,et al.  A uniform-twist magnetic flux rope in the solar wind , 2008 .

[107]  S. Poedts,et al.  Effect of the Initial Shape of Coronal Mass Ejections on 3‐D MHD Simulations and Geoeffectiveness Predictions , 2018, Space Weather.

[108]  D. Chakrabarty,et al.  Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13 – 14 June 2012 , 2017, 1712.08408.

[109]  I. Richardson,et al.  Solar wind drivers of geomagnetic storms during more than four solar cycles , 2012 .

[110]  N. Lugaz,et al.  A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES , 2012 .

[111]  J. M. Bosqued,et al.  A three-dimensional plasma and energetic particle investigation for the wind spacecraft , 1995 .

[112]  Tuija I. Pulkkinen,et al.  Space Weather: Terrestrial Perspective , 2007 .

[113]  H. Goldstein On the field configuration in magnetic clouds , 1983 .

[114]  H. Cane,et al.  A survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002 , 2003 .

[115]  L. Driel-Gesztelyi,et al.  On-Disc Observations of Flux Rope Formation Prior to Its Eruption , 2017, Solar Physics.

[116]  T. Howard,et al.  Coronal Mass Ejections: Observations , 2012 .

[117]  A. Galvin,et al.  Consequences of the force-free model of magnetic clouds for their heliospheric evolution , 2007 .

[118]  Barbara June Thompson,et al.  Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms , 2000 .

[119]  A. Veronig,et al.  The Origin, Early Evolution and Predictability of Solar Eruptions , 2018, The Scientific Foundation of Space Weather.

[120]  J. Eastwood,et al.  Self‐Similarity of ICME Flux Ropes: Observations by Radially Aligned Spacecraft in the Inner Heliosphere , 2019, Journal of Geophysical Research: Space Physics.

[121]  Charles J. Farrugia,et al.  A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS , 2016 .

[122]  P. MacNeice,et al.  Numerical Simulation of Interacting Magnetic Flux Ropes , 2003 .

[123]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[124]  J. Gosling Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space , 2013 .

[125]  H. Koskinen,et al.  On the relationship between interplanetary coronal mass ejections and magnetic clouds , 2013 .

[126]  E. Kilpua,et al.  Time-dependent Data-driven Modeling of Active Region Evolution Using Energy-optimized Photospheric Electric Fields , 2019, Solar Physics.

[127]  J. Davies,et al.  Coronal Magnetic Structure of Earthbound CMEs and In Situ Comparison , 2018, 1803.04769.

[128]  J. Eastwood,et al.  PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS , 2015, 1610.06713.

[129]  F. Mariani,et al.  The WIND magnetic field investigation , 1995 .

[130]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[131]  Technology of China,et al.  Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness , 2007, 0904.0748.

[132]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[133]  J. Qiu,et al.  On the Magnetic Flux Budget in Low-Corona Magnetic Reconnection and Interplanetary Coronal Mass Ejections , 2007 .

[134]  C. Schrijver,et al.  Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME , 2003 .

[135]  David J. McComas,et al.  Direct evidence for magnetic reconnection in the solar wind near 1 AU , 2004 .

[136]  A. Thernisien IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS , 2011 .

[137]  M. Owens Combining remote and in situ observations of coronal mass ejections to better constrain magnetic cloud reconstruction , 2008 .

[138]  Eric Ronald Priest,et al.  Kink instability of solar coronal loops as the cause of solar flares , 1979 .

[139]  A. Pevtsov,et al.  Helicity patterns on the Sun , 2003 .