Microstructural evolution and numerical simulation of laser-welded Ti2AlNb joints under different heat inputs

[1]  Gang Liu,et al.  Microstructure, mechanical properties and post-weld heat treatments of dissimilar laser-welded Ti2AlNb/Ti60 sheet , 2018, Rare Metals.

[2]  Zhenguo Wang,et al.  High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy , 2018, Rare Metals.

[3]  Jian Cao,et al.  Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti-27Co eutectic filler metal , 2017 .

[4]  Na-Wei Liu,et al.  Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy , 2017, Rare Metals.

[5]  Z. Lei,et al.  Study on laser welding of a Ti-22Al-25Nb alloy: Microstructural evolution and high temperature brittle behavior , 2016 .

[6]  Dalin Zhang,et al.  The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure , 2016 .

[7]  W. Zeng,et al.  Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition , 2016 .

[8]  T. Ma,et al.  Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy , 2016 .

[9]  T. Ma,et al.  Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy , 2015 .

[10]  Weiqi Wang,et al.  Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment , 2013 .

[11]  Yan-bin Chen,et al.  Microstructure and tensile properties of laser beam welded Ti–22Al–27Nb alloys , 2013 .

[12]  W. Ye,et al.  Microstructure and tensile properties of low cost titanium alloys at different cooling rate , 2012, Rare Metals.

[13]  Yingying Liu,et al.  Effect of near isothermal forging on the microstructure of Ti3Al/TC11 welding interface , 2009 .

[14]  C. Boehlert,et al.  Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb(at.%) orthorhombic+B2 alloy , 2006 .

[15]  V. Raghavan Al-Nb-Si-Ti (aluminum-niobium-silicon-titanium) , 2005 .

[16]  V. Raghavan Al-Nb-Ti (Aluminum-Niobium-Titanium) , 2005 .

[17]  C. H. Ward,et al.  Titanium Alloys for Aerospace Applications , 2003 .

[18]  F. Tang,et al.  The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys , 2002 .

[19]  Tohru Awane,et al.  Effect of compositional modification on Young's modulus of Ti2AlNb-based alloy , 2002 .

[20]  C. Boehlert Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys , 2001 .

[21]  J. Kumpfert,et al.  Orthorhombic Titanium Aluminides: Phases, Phase Transformations and Microstructure Evolution , 2001 .

[22]  I. Baker Recovery, recrystallization and grain growth in ordered alloys , 2000 .

[23]  C. Boehlert,et al.  Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys , 1999 .

[24]  B. Majumdar,et al.  Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys , 1999 .

[25]  S. Lele,et al.  Transformations in a Ti-24Al- 15Nb alloy: Part II. a composition invariant βo → O transformation , 1992 .

[26]  S. Lele,et al.  Transformations in a Ti-24AI-15Nb alloy: Part I. Phase equilibria and microstructure , 1992 .

[27]  J. Goldak,et al.  A new finite element model for welding heat sources , 1984 .

[28]  J. Mazumder,et al.  Heat transfer model for cw laser material processing , 1980 .

[29]  李俐群 Li Liqun,et al.  Numerical Simulation of Temperature and Stress Fields in Wire Filling Laser Multilayer Welding , 2011 .

[30]  V. Raghavan Al-Nb-Ti (Aluminum-Niobium-Titanium) , 2005 .

[31]  Structural Steels,et al.  Welding Metallurgy of , 1987 .