Aquifer operator scaling and the effect on solute mixing and dispersion

[1] Since aquifer parameters may have statistical dependence structures that are present across a huge range of scales, the concepts of fractional Brownian motion (fBm) have been used in both analytic and numerical stochastic settings. Most previous models have used isotropic scaling characterized by a single scalar Hurst coefficient. Any real-world anisotropy has been handled by an elliptical stretching random K field. We define a d-dimensional extension of fBm in which the fractional-order integration may take on different orders in the d primary (possibly nonorthogonal) scaling directions, and the degree of connectivity and long-range dependence is freely assigned via a probability measure on the unit sphere. This approach accounts for the different scaling found in the vertical versus horizontal directions in sedimentary aquifers and allows very general degrees of continuity of K in certain directions. It also allows for the representation of fracture networks in a continuum setting: The eigenvectors of the scaling matrix describe the primary fracture scaling directions, and discrete weights of fractional integration represent fracture continuity that may be limited to a small number of directions. In a numerical experiment, the motion of solutes through 2-D “operator-fractional” Gaussian fields depends very much on transverse Hurst coefficients. Transverse scaling in the range of fractional Gaussian noise engenders greater plume mixing and a transition to a Fickian regime. Higher orders of integration, in the range of fractional Brownian motion, are associated with thicker layering of aquifer sediments and more preferential, unmixed transport. Therefore direct representation of the unique directional scaling properties of an aquifer is important for realistic simulation of transport.

[1]  Olivier Bour,et al.  Stereological analysis of fractal fracture networks , 2003 .

[2]  S. P. Neuman,et al.  Trends, prospects and challenges in quantifying flow and transport through fractured rocks , 2005 .

[3]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[4]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[5]  R. Freeze A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media , 1975 .

[6]  Shaun Lovejoy,et al.  Generalized Scale Invariance in the Atmosphere and Fractal Models of Rain , 1985 .

[7]  D. Mclaughlin,et al.  A computationally practical method for stochastic groundwater modeling , 2003 .

[8]  D. T. Snow,et al.  Anisotropie Permeability of Fractured Media , 1969 .

[9]  M. Boufadel,et al.  Multifractal anisotropic scaling of the hydraulic conductivity , 2003 .

[10]  J. Carrera,et al.  Mixed Discrete‐Continuum Models: A Summary of Experiences in Test Interpretation and Model Prediction , 2013 .

[11]  Andrew F. B. Tompson,et al.  Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media , 1990 .

[12]  Allan L. Gutjahr,et al.  Stochastic analysis of macrodispersion in a stratified aquifer , 1979 .

[13]  Shaun Lovejoy,et al.  Generalised scale invariance in turbulent phenomena , 1985 .

[14]  Yu-Shu Wu,et al.  Development of discrete flow paths in unsaturated fractures at Yucca Mountain. , 2003, Journal of contaminant hydrology.

[15]  Alberto Guadagnini,et al.  Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 2. Computational examples , 1999 .

[16]  D. Benson,et al.  Hydraulic conductivity, velocity, and the order of the fractional dispersion derivative in a highly heterogeneous system , 2002 .

[17]  S. P. Neuman,et al.  Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms , 1999 .

[18]  M. Taqqu,et al.  Integration questions related to fractional Brownian motion , 2000 .

[19]  A. Karoblis Local limit theorems for sums of independent random vectors , 1987 .

[20]  Brian Berkowitz,et al.  Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .

[21]  Brian Berkowitz,et al.  Theory of anomalous chemical transport in random fracture networks , 1998 .

[22]  R. L. Naff,et al.  Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume spreading, and uncertainty , 1994 .

[23]  Paul A. Witherspoon,et al.  A Model for Investigating Mechanical Transport in Fracture Networks , 1984 .

[24]  Fred J. Molz,et al.  Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions , 1997 .

[25]  D. Turcotte,et al.  Scale-invariant topography and porosity variations in fluvial sedimentary basins , 1996 .

[26]  Todd C. Rasmussen,et al.  PERMEABILITY OF APACHE LEAP TUFF : BOREHOLE AND CORE MEASUREMENTS USING WATER AND AIR , 1993 .

[27]  R. Voss,et al.  Random fractals: self-affinity in noise, music, mountains, and clouds , 1989 .

[28]  Michel Mandjes,et al.  ON SPECTRAL SIMULATION OF FRACTIONAL BROWNIAN MOTION , 2003, Probability in the Engineering and Informational Sciences.

[29]  Chin-Fu Tsang,et al.  Tracer transport in a stochastic continuum model of fractured media , 1996 .

[30]  Alberto Guadagnini,et al.  Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 1. Theory and computational approach , 1999 .

[31]  Ahmed E. Hassan,et al.  A Monte Carlo assessment of Eulerian flow and transport perturbation models , 1998 .

[32]  Peter Singer,et al.  An integrated fractional Fourier transform , 1994 .

[33]  Y. Meyer,et al.  Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .

[34]  Xian-Huan Wen,et al.  Stochastic inverse mapping of hydraulic conductivity and sorption partitioning coefficient fields conditioning on nonreactive and reactive tracer test data , 2004 .

[35]  Mark M. Meerschaert,et al.  Fractional Laplace model for hydraulic conductivity , 2004 .

[36]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[37]  S. P. Neuman,et al.  Recursive Conditional Moment Equations for Advective Transport in Randomly Heterogeneous Velocity Fields , 2001 .

[38]  John H. Cushman,et al.  The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles , 1997 .

[39]  V. K. Rohatgi,et al.  Operator self similar stochastic processes in Rd , 1981 .

[40]  Michel Quintard,et al.  Volume averaging for determining the effective dispersion tensor: Closure using periodic unit cells and comparison with ensemble averaging , 2003 .

[41]  Larry W. Lake,et al.  Flexible spectral methods for the generation of random fields with power-law semivariograms , 1997 .

[42]  Daniel M. Tartakovsky,et al.  Nonlocal and localized analyses of conditional mean transient flow in bounded, randomly heterogeneous porous media , 2004 .

[43]  J. Mason,et al.  Operator-limit distributions in probability theory , 1993 .

[44]  James L. Jerden,et al.  YUCCA Mountain project. , 2005 .

[45]  Chuen-Fa Ni,et al.  Stochastic modeling of complex nonstationary groundwater systems , 2004 .

[46]  Y. Rubin,et al.  Spatial correlation of permeability in cross‐stratified sediment with hierarchical architecture , 2004 .

[47]  S. P. Neuman,et al.  Field Determination of the Three-Dimensional Hydraulic Conductivity Tensor of Anisotropic Media: 2. Methodology and Application to Fractured Rocks , 1985 .

[48]  S. P. Neuman,et al.  On Advective Transport in Fractal Permeability and velocity Fields , 1995 .

[49]  Michael G. Trefry,et al.  Numerical simulations of preasymptotic transport in heterogeneous porous media: Departures from the Gaussian limit , 2003 .

[50]  Allison Macfarlane,et al.  Yucca Mountain , 2002, Science.

[51]  J. Mason,et al.  Operator-self-similar processes in a finite-dimensional space , 1982 .

[52]  Peter J. Diggle,et al.  Bayesian methodology to stochastic capture zone determination: Conditioning on transmissivity measurements , 2002 .

[53]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[54]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[55]  D. Schertzer,et al.  Generalised scale invariance and multiplicative processes in the atmosphere , 1989 .

[56]  Scott L. Painter,et al.  Stochastic simulation of radionuclide migration in discretely fractured rock near the Äspö Hard Rock Laboratory , 2004 .

[57]  Pierre M. Adler,et al.  Fractures and Fracture Networks , 1999 .

[58]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[59]  D. Benson,et al.  Operator Lévy motion and multiscaling anomalous diffusion. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  T. Hewett Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport , 1986 .

[61]  Scott L. Painter,et al.  Evidence for Non‐Gaussian Scaling Behavior in Heterogeneous Sedimentary Formations , 1996 .

[62]  Luis G. Gorostiza,et al.  Fractional Brownian motion via fractional Laplacian , 1999 .

[63]  Praveen Kumar,et al.  A multicomponent decomposition of spatial rainfall fields: 2. Self‐similarity in fluctuations , 1993 .

[64]  Daniel M. Tartakovsky,et al.  Theoretical interpretation of a pronounced permeability scale effect in unsaturated fractured tuff , 2002 .

[65]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[66]  George H. Davis,et al.  Structural geology of rocks and regions , 1984 .

[67]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[68]  Scott L. Painter,et al.  Modeling conservative tracer transport in fracture networks with a hybrid approach based on the Boltzmann transport equation , 2003 .

[69]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[70]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .

[71]  A. Deshpande,et al.  Quantifying lateral heterogeneities in fluvio‐deltaic sediments using three‐dimensional reflection seismic data: Offshore Gulf of Mexico , 1997 .

[72]  S. P. Neuman,et al.  Three‐dimensional numerical inversion of pneumatic cross‐hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high‐resolution stochastic imaging and scale effects , 2001 .

[73]  Fred J. Molz,et al.  Multifractal analyses of hydraulic conductivity distributions , 1997 .

[74]  J. Peirce,et al.  Identification of Hydraulic Conductivity Structure in Sand and Gravel Aquifers: Cape Cod Data Set , 1996 .

[75]  Fractional Brownian motion approximation based on fractional integration of a white noise , 1999, cond-mat/9902209.

[76]  G. Bodvarsson,et al.  Overview of scientific investigations at Yucca Mountain—the potential repository for high-level nuclear waste , 1999 .

[77]  Allan L. Gutjahr,et al.  Cross‐correlated random field generation with the direct Fourier Transform Method , 1993 .

[78]  Franklin W. Schwartz,et al.  Mass transport: 1. A stochastic analysis of macroscopic dispersion , 1980 .

[79]  Yoram Rubin,et al.  Reply to comment by Shlomo P. Neuman on “Spatial correlation of permeability in cross‐stratified sediment with hierarchical architecture” , 2006 .

[80]  Sean Andrew McKenna,et al.  On the late‐time behavior of tracer test breakthrough curves , 2000 .

[81]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[82]  S. P. Neuman,et al.  Transport in multiscale log conductivity fields with truncated power variograms , 1998 .

[83]  T. Ulrych,et al.  A full‐Bayesian approach to the groundwater inverse problem for steady state flow , 2000 .

[84]  C. R. Dietrich,et al.  A fast and exact method for multidimensional gaussian stochastic simulations , 1993 .

[85]  Fred J. Molz,et al.  An efficient, three-dimensional, anisotropic, fractional Brownian motion and truncated fractional Levy motion simulation algorithm based on successive random additions , 2003 .

[86]  Ahmed E. Hassan,et al.  Monte Carlo studies of flow and transport in fractal conductivity fields: Comparison with stochastic perturbation theory , 1997 .

[87]  Fred J. Molz,et al.  Discrimination of Fractional Brownian Movement and Fractional Gaussian Noise Structures in Permeability and Related Property Distributions With Range Analyses , 1996 .

[88]  F. Molz,et al.  Multifractal scaling of the intrinsic permeability , 2000 .

[89]  S. Wheatcraft,et al.  Macrodispersivity Tensor for Nonreactive Solute Transport in Isotropic and Anisotropic Fractal Porous Media: Analytical Solutions , 1996 .

[90]  David A. Benson,et al.  The Fractional Advection-Dispersion Equation: Development and Application A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Hydrogeology by , 1998 .

[91]  Jean-Raynald de Dreuzy,et al.  Influence of spatial correlation of fracture centers on the permeability of two‐dimensional fracture networks following a power law length distribution , 2004 .

[92]  Vertical versus Horizontal Well Log Variability and Application to Fractal Reservoir Modeling , 1995 .

[93]  Brian Berkowitz,et al.  ANOMALOUS TRANSPORT IN RANDOM FRACTURE NETWORKS , 1997 .

[94]  John H. Cushman,et al.  Nonlocal Reactive Transport with Physical and Chemical Heterogeneity: Linear Nonequilibrium Sorption with Random Kd , 1995 .

[95]  J. Wen,et al.  Contaminant spreading in stratified soils with fractal permeability distribution , 1993 .

[96]  Trieu-Kien Truong,et al.  Spectral representation of fractional Brownian motion in n dimensions and its properties , 1995, IEEE Trans. Inf. Theory.

[97]  G. K. Boman,et al.  A fractal‐based stochastic interpolation scheme in subsurface hydrology , 1993 .

[98]  D. Veneziano,et al.  Flow through porous media with multifractal hydraulic conductivity , 2003 .

[99]  Prediction uncertainty for tracer migration in random heterogeneities with multifractal character , 1999 .

[100]  D. McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 2. Conditional moments , 1989 .

[101]  D. McLaughlin,et al.  An efficient multivariate random field generator using the fast Fourier transform , 1998 .

[102]  M. Dentz,et al.  Transport behavior of a passive solute in continuous time random walks and multirate mass transfer , 2003 .

[103]  J. Mason,et al.  Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields , 2002 .

[104]  Justin L. Huntington,et al.  Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology , 2003 .

[105]  S. P. Neuman On the tensorial nature of advective porosity , 2005 .

[106]  E. Foufoula‐Georgiou,et al.  Self‐Affinity in Braided Rivers , 1996 .

[107]  Jesús Carrera,et al.  An analysis of hydraulic conductivity scale effects in granite (Full‐scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland) , 2005 .

[108]  P. Witherspoon,et al.  Porous media equivalents for networks of discontinuous fractures , 1982 .

[109]  T. P. Wellman,et al.  Estimating spatially variable representative elementary scales in fractured architecture using hydraulic head observations , 2005 .

[110]  S. P. Neuman,et al.  Field Determination of the Three‐Dimensional Hydraulic Conductivity Tensor of Anisotropic Media: 1. Theory , 1985 .

[111]  Rina Schumer,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[112]  R. Ababou,et al.  Implementation of the three‐dimensional turning bands random field generator , 1989 .

[113]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[114]  John H. Cushman,et al.  Nonlocal Reactive Transport with Physical and Chemical Heterogeneity: Localization Errors , 1995 .

[115]  Scott L. Painter,et al.  Fractional Lévy motion as a model for spatial variability in sedimentary rock , 1994 .

[116]  M. Meerschaert,et al.  Parameter Estimation for the Truncated Pareto Distribution , 2006 .

[117]  Dennis McLaughlin,et al.  A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis , 1991 .

[118]  Olivier Bour,et al.  Connectivity properties of two‐dimensional fracture networks with stochastic fractal correlation , 2003 .

[119]  A. Rinaldo,et al.  On transport in porous formations characterized by heterogeneity of evolving scales , 1996 .

[120]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[121]  G. Bodvarsson,et al.  Evolution of the unsaturated zone testing at Yucca Mountain. , 2003, Journal of contaminant hydrology.

[122]  H. Scher,et al.  The Role of Probabilistic Approaches to Transport Theory in Heterogeneous Media , 2001 .

[123]  S. P. Neuman,et al.  Determination of Horizontal Aquifer Anisotropy with Three Wells , 1984 .

[124]  Vittorio Di Federico,et al.  Multifaceted nature of hydrogeologic scaling and its interpretation , 2003 .

[125]  F. Molz,et al.  Sedimentology and Fractal-Based Analysis of Permeability Data, John Henry Member, Straight Cliffs Formation (Upper Cretaceous), Utah, U.S.A. , 2004 .

[126]  Stefan Bachu,et al.  Geostatistical analysis of aquifer heterogeneity from the core scale to the basin scale: A case study , 1994 .

[127]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[128]  Bill X. Hu,et al.  Nonlocal reactive transport in heterogeneous dual‐porosity media with rate‐limited sorption and interregional mass diffusion , 2001 .

[129]  Olivier Bour,et al.  On the connectivity of three‐dimensional fault networks , 1998 .

[130]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[131]  C. R. Dietrich,et al.  A fast and exact method for multidimensional Gaussian stochastic simulations: Extension to realizations conditioned on direct and indirect measurements , 1996 .

[132]  Shlomo P. Neuman,et al.  Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augères, France, revisited , 2003 .

[133]  G. Fogg,et al.  Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains , 1997 .

[134]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[135]  Graham E. Fogg,et al.  Random-Walk Simulation of Transport in Heterogeneous Porous Media: Local Mass-Conservation Problem and Implementation Methods , 1996 .

[136]  Scott L. Painter,et al.  Flexible scaling model for use in random field simulation of hydraulic conductivity , 2001 .

[137]  Brian Berkowitz,et al.  Fractal and multifractal measures of natural and synthetic , 1997 .

[138]  V. Gupta,et al.  Multiscaling properties of spatial rain-fall and river flow distributions , 1990 .

[139]  L. Gelhar,et al.  Plume‐Scale Dependent Dispersion in Aquifers with a Wide Range of Scales of Heterogeneity , 1995 .

[140]  D. Percival,et al.  Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods. , 1997, Physica A.