Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners
暂无分享,去创建一个
[1] Alejandro Perez. The spin-foam-representation of loop quantum gravity , 2006, gr-qc/0601095.
[2] Simone Speziale,et al. Towards the graviton from spinfoams: the 3d toy model , 2005, gr-qc/0512102.
[3] Alejandro Perez,et al. Regularization ambiguities in loop quantum gravity , 2005, gr-qc/0509118.
[4] K. Meissner. Eigenvalues of the volume operator in loop quantum gravity , 2005, gr-qc/0509049.
[5] C. Rovelli. Graviton propagator from background-independent quantum gravity. , 2005, Physical review letters.
[6] T. Thiemann,et al. On (cosmological) singularity avoidance in loop quantum gravity , 2005, gr-qc/0505032.
[7] L. Freidel. Group Field Theory: An Overview , 2005, hep-th/0505016.
[8] H. Nicolai,et al. Loop quantum gravity: an outside view , 2005, hep-th/0501114.
[9] Alejandro Perez,et al. Introduction to loop quantum gravity and spin foams , 2004, gr-qc/0409061.
[10] L. Smolin,et al. An invitation to loop quantum gravity , 2004, hep-th/0408048.
[11] T. Thiemann,et al. Simplification of the spectral analysis of the volume operator in loop quantum gravity , 2004, gr-qc/0405060.
[12] Copenhagen,et al. Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.
[13] A. Ashtekar,et al. Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.
[14] C. Rovelli,et al. Separable Hilbert space in loop quantum gravity , 2004, gr-qc/0403047.
[15] Alejandro Perez,et al. Three-dimensional loop quantum gravity: physical scalar product and spin-foam models , 2004, gr-qc/0402110.
[16] H. Pfeiffer. Diffeomorphisms from finite triangulations and absence of 'local' degrees of freedom , 2003, gr-qc/0312060.
[17] L. Freidel,et al. Diffeomorphisms and spin foam models , 2002, gr-qc/0212001.
[18] S. Fairhurst,et al. Quantum gravity, shadow states and quantum mechanics , 2002, gr-qc/0207106.
[19] T. Thiemann. Complexifier coherent states for quantum general relativity , 2002, gr-qc/0206037.
[20] J. Baez,et al. Spin foam models of Riemannian quantum gravity , 2002, gr-qc/0202017.
[21] T. Thiemann. Introduction to Modern Canonical Quantum General Relativity , 2001, gr-qc/0110034.
[22] M. Reuter,et al. Is quantum Einstein gravity nonperturbatively renormalizable , 2001, hep-th/0110021.
[23] J. Jurkiewicz,et al. Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.
[24] C. Rovelli,et al. A Finiteness proof for the Lorentzian state sum spin foam model for quantum general relativity , 2001, gr-qc/0104057.
[25] T. Thiemann,et al. Coherent states for canonical quantum general relativity and the infinite tensor product extension , 2001, gr-qc/0102038.
[26] J. Barrett. State sum models for quantum gravity , 2000, gr-qc/0010050.
[27] C. Rovelli,et al. Spin foam model for Lorentzian general relativity , 2000, gr-qc/0009021.
[28] T. Thiemann. Gauge field theory coherent states (GCS): I. General properties , 2000, hep-th/0005233.
[29] T. Thiemann,et al. Gauge field theory coherent states (GCS): II. Peakedness properties , 2000, hep-th/0005237.
[30] T. Thiemann,et al. Gauge field theory coherent states (GCS): IV. Infinite tensor product and thermodynamical limit , 2000, hep-th/0005235.
[31] T. Thiemann,et al. Gauge field theory coherent states (GCS): III. Ehrenfest theorems , 2000, hep-th/0005234.
[32] J. Baez. An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.
[33] L. Crane,et al. A Lorentzian signature model for quantum general relativity , 1999, gr-qc/9904025.
[34] K. Krasnov,et al. Simple spin networks as Feynman graphs , 1999, hep-th/9903192.
[35] R. Pietri,et al. Canonical “Loop” Quantum Gravity and Spin Foam Models , 1999, gr-qc/9903076.
[36] J. Roberts. Classical 6j-symbols and the tetrahedron , 1998, math-ph/9812013.
[37] J. Rolf. Two-dimensional Quantum Gravity , 1998, hep-th/9810027.
[38] M. Reisenberger,et al. On relativistic spin network vertices , 1998, gr-qc/9809067.
[39] J. Barrett,et al. The asymptotics of an amplitude for the 4-simplex , 1998, gr-qc/9809032.
[40] K. Krasnov,et al. Spin Foam Models and the Classical Action Principle , 1998, hep-th/9807092.
[41] C. Rovelli. Projector on physical states in loop quantum gravity , 1998, gr-qc/9806121.
[42] R. Loll,et al. Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.
[43] D. Neville. Long range correlations in quantum gravity , 1998, gr-qc/9803066.
[44] D. Marolf,et al. Loop constraints: A habitat and their algebra , 1997, gr-qc/9710016.
[45] J. Pullin,et al. On the consistency of the constraint algebra in spin network quantum gravity , 1997, gr-qc/9710018.
[46] John C. Baez,et al. Spin foam models , 1997, gr-qc/9709052.
[47] L. Crane,et al. Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.
[48] R. Loll. On the diffeomorphism commutators of lattice quantum gravity , 1997, gr-qc/9708025.
[49] Ruth M. Williams,et al. ON THE MEASURE IN SIMPLICIAL GRAVITY , 1997, hep-th/9708019.
[50] J. L. Nielsen,et al. Spikes in quantum Regge calculus , 1997, gr-qc/9704079.
[51] R. Pietri,et al. Matrix elements of Thiemann's Hamiltonian constraint in loop quantum gravity , 1997, gr-qc/9703090.
[52] C. Rovelli,et al. 'Sum over surfaces' form of loop quantum gravity , 1996, gr-qc/9612035.
[53] T. Thiemann. Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.
[54] T. Thiemann. Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity , 1996, gr-qc/9606088.
[55] Steven Weinberg,et al. What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.
[56] Rovelli,et al. Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity. , 1996, Physical review. D, Particles and fields.
[57] W. Janke,et al. Measure dependence of 2D simplicial quantum gravity , 1995, hep-lat/9501005.
[58] M. Reisenberger,et al. Worldsheet formulations of gauge theories and gravity , 1994, gr-qc/9412035.
[59] L. Kauffman,et al. State-Sum Invariants of 4-Manifolds , 1994, hep-th/9409167.
[60] J. Vink,et al. Failure of the Regge approach in two dimensional quantum gravity , 1994, hep-lat/9406018.
[61] S. Hawking. The path-integral approach to quantum gravity , 1993 .
[62] Louis Crane,et al. A Categorical construction of 4-D topological quantum field theories , 1993 .
[63] Marc Henneaux,et al. Quantization of Gauge Systems , 1992 .
[64] M. Karowski,et al. State sum invariants of compact 3-manifolds with boundary and 6j-symbols , 1992 .
[65] A. V. D. Ven. Two-loop quantum gravity , 1992 .
[66] H. Ooguri. Topological lattice models in four-dimensions , 1992, hep-th/9205090.
[67] Ruth M. Williams,et al. Regge calculus: a brief review and bibliography , 1992 .
[68] H. Ooguri. Partition Functions and Topology-Changing Amplitudes in the 3D Lattice Gravity of Ponzano and Regge , 1991, hep-th/9112072.
[69] A. Ashtekar,et al. 2+1 quantum gravity as a toy model for the 3+1 theory , 1989 .
[70] J. Distler,et al. Conformal Field Theory and 2D Quantum Gravity , 1989 .
[71] Edward Witten,et al. (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .
[72] Alexander M. Polyakov,et al. Fractal Structure of 2D Quantum Gravity , 1988 .
[73] F. David. CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .
[74] F. David,et al. Scaling Properties of Randomly Triangulated Planar Random Surfaces: A Numerical Study , 1986 .
[75] A. Migdal,et al. Analytical and numerical study of a model of dynamically triangulated random surfaces , 1986 .
[76] Augusto Sagnotti,et al. The ultraviolet behavior of Einstein gravity , 1986 .
[77] M. H. Goroff,et al. Quantum gravity at two loops , 1985 .
[78] S. Hawking,et al. Action Integrals and Partition Functions in Quantum Gravity , 1977 .
[79] Igal Talmi,et al. Spectroscopic and Group Theoretical Methods in Physics , 1970 .
[80] T. Regge,et al. SEMICLASSICAL LIMIT OF RACAH COEFFICIENTS. , 1969 .
[81] R. Blin-stoyle. Spectroscopic and Group Theoretical Methods in Physics , 1969 .
[82] Spin Foam Models . . . , 2008 .
[83] L. Smolin. The classical limit and the form of the hamiltonian constraint in non-perturbative quantum general relativity , 2008 .
[84] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[85] N. Mavromatos,et al. LECT NOTES PHYS , 2002 .
[86] T Thiemann,et al. Gauge field theory coherent states (GCS): III. Ehrenfest theorems , 2001 .
[87] T. Thiemann,et al. Gauge Field Theory Coherent States (GCS) : III. , 2000 .
[88] J. Baez,et al. An Introduction to Spin Foam Models of BF Theory and Quantum Gravity , 1999 .
[89] A. Ashtekar,et al. Loops, Knots, Gauge Theories and Quantum Gravity: Index , 1996 .
[90] L. Kauffman,et al. State sum invariants of four manifolds. 1. , 1994 .
[91] J. Fröhlich,et al. The appearance of critical dimensions in regulated string theories , 1986 .
[92] G. Hooft,et al. Three-dimensional Einstein gravity: Dynamics of flat space , 1984 .