Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners

[1]  Alejandro Perez The spin-foam-representation of loop quantum gravity , 2006, gr-qc/0601095.

[2]  Simone Speziale,et al.  Towards the graviton from spinfoams: the 3d toy model , 2005, gr-qc/0512102.

[3]  Alejandro Perez,et al.  Regularization ambiguities in loop quantum gravity , 2005, gr-qc/0509118.

[4]  K. Meissner Eigenvalues of the volume operator in loop quantum gravity , 2005, gr-qc/0509049.

[5]  C. Rovelli Graviton propagator from background-independent quantum gravity. , 2005, Physical review letters.

[6]  T. Thiemann,et al.  On (cosmological) singularity avoidance in loop quantum gravity , 2005, gr-qc/0505032.

[7]  L. Freidel Group Field Theory: An Overview , 2005, hep-th/0505016.

[8]  H. Nicolai,et al.  Loop quantum gravity: an outside view , 2005, hep-th/0501114.

[9]  Alejandro Perez,et al.  Introduction to loop quantum gravity and spin foams , 2004, gr-qc/0409061.

[10]  L. Smolin,et al.  An invitation to loop quantum gravity , 2004, hep-th/0408048.

[11]  T. Thiemann,et al.  Simplification of the spectral analysis of the volume operator in loop quantum gravity , 2004, gr-qc/0405060.

[12]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[13]  A. Ashtekar,et al.  Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.

[14]  C. Rovelli,et al.  Separable Hilbert space in loop quantum gravity , 2004, gr-qc/0403047.

[15]  Alejandro Perez,et al.  Three-dimensional loop quantum gravity: physical scalar product and spin-foam models , 2004, gr-qc/0402110.

[16]  H. Pfeiffer Diffeomorphisms from finite triangulations and absence of 'local' degrees of freedom , 2003, gr-qc/0312060.

[17]  L. Freidel,et al.  Diffeomorphisms and spin foam models , 2002, gr-qc/0212001.

[18]  S. Fairhurst,et al.  Quantum gravity, shadow states and quantum mechanics , 2002, gr-qc/0207106.

[19]  T. Thiemann Complexifier coherent states for quantum general relativity , 2002, gr-qc/0206037.

[20]  J. Baez,et al.  Spin foam models of Riemannian quantum gravity , 2002, gr-qc/0202017.

[21]  T. Thiemann Introduction to Modern Canonical Quantum General Relativity , 2001, gr-qc/0110034.

[22]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2001, hep-th/0110021.

[23]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[24]  C. Rovelli,et al.  A Finiteness proof for the Lorentzian state sum spin foam model for quantum general relativity , 2001, gr-qc/0104057.

[25]  T. Thiemann,et al.  Coherent states for canonical quantum general relativity and the infinite tensor product extension , 2001, gr-qc/0102038.

[26]  J. Barrett State sum models for quantum gravity , 2000, gr-qc/0010050.

[27]  C. Rovelli,et al.  Spin foam model for Lorentzian general relativity , 2000, gr-qc/0009021.

[28]  T. Thiemann Gauge field theory coherent states (GCS): I. General properties , 2000, hep-th/0005233.

[29]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): II. Peakedness properties , 2000, hep-th/0005237.

[30]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): IV. Infinite tensor product and thermodynamical limit , 2000, hep-th/0005235.

[31]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): III. Ehrenfest theorems , 2000, hep-th/0005234.

[32]  J. Baez An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.

[33]  L. Crane,et al.  A Lorentzian signature model for quantum general relativity , 1999, gr-qc/9904025.

[34]  K. Krasnov,et al.  Simple spin networks as Feynman graphs , 1999, hep-th/9903192.

[35]  R. Pietri,et al.  Canonical “Loop” Quantum Gravity and Spin Foam Models , 1999, gr-qc/9903076.

[36]  J. Roberts Classical 6j-symbols and the tetrahedron , 1998, math-ph/9812013.

[37]  J. Rolf Two-dimensional Quantum Gravity , 1998, hep-th/9810027.

[38]  M. Reisenberger,et al.  On relativistic spin network vertices , 1998, gr-qc/9809067.

[39]  J. Barrett,et al.  The asymptotics of an amplitude for the 4-simplex , 1998, gr-qc/9809032.

[40]  K. Krasnov,et al.  Spin Foam Models and the Classical Action Principle , 1998, hep-th/9807092.

[41]  C. Rovelli Projector on physical states in loop quantum gravity , 1998, gr-qc/9806121.

[42]  R. Loll,et al.  Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.

[43]  D. Neville Long range correlations in quantum gravity , 1998, gr-qc/9803066.

[44]  D. Marolf,et al.  Loop constraints: A habitat and their algebra , 1997, gr-qc/9710016.

[45]  J. Pullin,et al.  On the consistency of the constraint algebra in spin network quantum gravity , 1997, gr-qc/9710018.

[46]  John C. Baez,et al.  Spin foam models , 1997, gr-qc/9709052.

[47]  L. Crane,et al.  Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.

[48]  R. Loll On the diffeomorphism commutators of lattice quantum gravity , 1997, gr-qc/9708025.

[49]  Ruth M. Williams,et al.  ON THE MEASURE IN SIMPLICIAL GRAVITY , 1997, hep-th/9708019.

[50]  J. L. Nielsen,et al.  Spikes in quantum Regge calculus , 1997, gr-qc/9704079.

[51]  R. Pietri,et al.  Matrix elements of Thiemann's Hamiltonian constraint in loop quantum gravity , 1997, gr-qc/9703090.

[52]  C. Rovelli,et al.  'Sum over surfaces' form of loop quantum gravity , 1996, gr-qc/9612035.

[53]  T. Thiemann Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.

[54]  T. Thiemann Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity , 1996, gr-qc/9606088.

[55]  Steven Weinberg,et al.  What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.

[56]  Rovelli,et al.  Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity. , 1996, Physical review. D, Particles and fields.

[57]  W. Janke,et al.  Measure dependence of 2D simplicial quantum gravity , 1995, hep-lat/9501005.

[58]  M. Reisenberger,et al.  Worldsheet formulations of gauge theories and gravity , 1994, gr-qc/9412035.

[59]  L. Kauffman,et al.  State-Sum Invariants of 4-Manifolds , 1994, hep-th/9409167.

[60]  J. Vink,et al.  Failure of the Regge approach in two dimensional quantum gravity , 1994, hep-lat/9406018.

[61]  S. Hawking The path-integral approach to quantum gravity , 1993 .

[62]  Louis Crane,et al.  A Categorical construction of 4-D topological quantum field theories , 1993 .

[63]  Marc Henneaux,et al.  Quantization of Gauge Systems , 1992 .

[64]  M. Karowski,et al.  State sum invariants of compact 3-manifolds with boundary and 6j-symbols , 1992 .

[65]  A. V. D. Ven Two-loop quantum gravity , 1992 .

[66]  H. Ooguri Topological lattice models in four-dimensions , 1992, hep-th/9205090.

[67]  Ruth M. Williams,et al.  Regge calculus: a brief review and bibliography , 1992 .

[68]  H. Ooguri Partition Functions and Topology-Changing Amplitudes in the 3D Lattice Gravity of Ponzano and Regge , 1991, hep-th/9112072.

[69]  A. Ashtekar,et al.  2+1 quantum gravity as a toy model for the 3+1 theory , 1989 .

[70]  J. Distler,et al.  Conformal Field Theory and 2D Quantum Gravity , 1989 .

[71]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[72]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[73]  F. David CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .

[74]  F. David,et al.  Scaling Properties of Randomly Triangulated Planar Random Surfaces: A Numerical Study , 1986 .

[75]  A. Migdal,et al.  Analytical and numerical study of a model of dynamically triangulated random surfaces , 1986 .

[76]  Augusto Sagnotti,et al.  The ultraviolet behavior of Einstein gravity , 1986 .

[77]  M. H. Goroff,et al.  Quantum gravity at two loops , 1985 .

[78]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[79]  Igal Talmi,et al.  Spectroscopic and Group Theoretical Methods in Physics , 1970 .

[80]  T. Regge,et al.  SEMICLASSICAL LIMIT OF RACAH COEFFICIENTS. , 1969 .

[81]  R. Blin-stoyle Spectroscopic and Group Theoretical Methods in Physics , 1969 .

[82]  Spin Foam Models . . . , 2008 .

[83]  L. Smolin The classical limit and the form of the hamiltonian constraint in non-perturbative quantum general relativity , 2008 .

[84]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[85]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[86]  T Thiemann,et al.  Gauge field theory coherent states (GCS): III. Ehrenfest theorems , 2001 .

[87]  T. Thiemann,et al.  Gauge Field Theory Coherent States (GCS) : III. , 2000 .

[88]  J. Baez,et al.  An Introduction to Spin Foam Models of BF Theory and Quantum Gravity , 1999 .

[89]  A. Ashtekar,et al.  Loops, Knots, Gauge Theories and Quantum Gravity: Index , 1996 .

[90]  L. Kauffman,et al.  State sum invariants of four manifolds. 1. , 1994 .

[91]  J. Fröhlich,et al.  The appearance of critical dimensions in regulated string theories , 1986 .

[92]  G. Hooft,et al.  Three-dimensional Einstein gravity: Dynamics of flat space , 1984 .