Syntax-Guided Optimal Synthesis for Chemical Reaction Networks

We study the problem of optimal syntax-guided synthesis of stochastic Chemical Reaction Networks (CRNs) that plays a fundamental role in design automation of molecular devices and in the construction of predictive biochemical models. We propose a sketching language for CRNs that concisely captures syntactic constraints on the network topology and allows its under-specification. Given a sketch, a correctness specification, and a cost function defined over the CRN syntax, our goal is to find a CRN that simultaneously meets the constraints, satisfies the specification and minimizes the cost function. To ensure computational feasibility of the synthesis process, we employ the Linear Noise Approximation allowing us to encode the synthesis problem as a satisfiability modulo theories problem over a set of parametric Ordinary Differential Equations (ODEs). We design and implement a novel algorithm for the optimal synthesis of CRNs that employs almost complete refutation procedure for SMT over reals and ODEs, and exploits a meta-sketching abstraction controlling the search strategy. Through relevant case studies we demonstrate that our approach significantly improves the capability of existing methods for synthesis of biochemical systems and paves the way towards their automated and provably-correct design.

[1]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking of complex biological pathways , 2008, Theor. Comput. Sci..

[2]  Mizuhito Ogawa,et al.  raSAT: An SMT Solver for Polynomial Constraints , 2016, IJCAR.

[3]  Lubos Brim,et al.  On Parameter Synthesis by Parallel Model Checking , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  Armando Solar-Lezama,et al.  Sketching concurrent data structures , 2008, PLDI '08.

[5]  Thomas A. Henzinger,et al.  Model Checking Gene Regulatory Networks , 2015, TACAS.

[6]  Luca Cardelli,et al.  Symbolic computation of differential equivalences , 2016, POPL.

[7]  Luca Cardelli,et al.  Stochastic analysis of Chemical Reaction Networks using Linear Noise Approximation , 2015, Biosyst..

[8]  Christoph Zimmer,et al.  Parameter estimation for stochastic models of biochemical reactions , 2012 .

[9]  Erik Winfree,et al.  DNA as a universal substrate for chemical kinetics , 2009, Proceedings of the National Academy of Sciences.

[10]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.

[11]  Edmund M. Clarke,et al.  dReal: An SMT Solver for Nonlinear Theories over the Reals , 2013, CADE.

[12]  Luca Cardelli,et al.  Approximation of Probabilistic Reachability for Chemical Reaction Networks Using the Linear Noise Approximation , 2016, QEST.

[13]  Sanjit A. Seshia,et al.  Combinatorial sketching for finite programs , 2006, ASPLOS XII.

[14]  Radu Calinescu,et al.  Search-Based Synthesis of Probabilistic Models for Quality-of-Service Software Engineering (T) , 2015, 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[15]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[16]  Martin Fränzle,et al.  SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems , 2008, ATVA.

[17]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[18]  Paolo Zuliani,et al.  BioPSy: An SMT-based Tool for Guaranteed Parameter Set Synthesis of Biological Models , 2015, CMSB.

[19]  S. Emmott,et al.  Defining an essential transcription factor program for naïve pluripotency , 2014, Science.

[20]  Nicola Paoletti,et al.  Precise Parameter Synthesis for Stochastic Biochemical Systems , 2014, CMSB.

[21]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[22]  Luca Cardelli,et al.  Comparing chemical reaction networks: A categorical and algorithmic perspective , 2019, Theor. Comput. Sci..

[23]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[24]  Luca Cardelli Two-domain DNA strand displacement , 2013, Math. Struct. Comput. Sci..

[25]  Emina Torlak,et al.  Optimizing synthesis with metasketches , 2016, POPL.

[26]  Sriram K. Rajamani,et al.  Efficient synthesis of probabilistic programs , 2015, PLDI.

[27]  Luca Cardelli,et al.  Programming Discrete Distributions with Chemical Reaction Networks , 2016, DNA.

[28]  Raphael Yuster Rainbow H-factors , 2006, Electron. J. Comb..

[29]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[30]  David Eisenstat,et al.  The computational power of population protocols , 2006, Distributed Computing.

[31]  Luca Cardelli,et al.  Morphisms of reaction networks that couple structure to function , 2014, BMC Systems Biology.

[32]  Luca Cardelli,et al.  Design and analysis of DNA strand displacement devices using probabilistic model checking , 2012, Journal of The Royal Society Interface.

[33]  V. Kulkarni,et al.  Computational design of nucleic acid feedback control circuits. , 2014, ACS synthetic biology.

[34]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[35]  Rajeev Alur,et al.  Syntax-guided synthesis , 2013, 2013 Formal Methods in Computer-Aided Design.

[36]  Nedialko S. Nedialkov,et al.  Improving the SAT modulo ODE approach to hybrid systems analysis by combining different enclosure methods , 2012, Software & Systems Modeling.

[37]  Armando Solar-Lezama,et al.  Programming by sketching for bit-streaming programs , 2005, PLDI '05.

[38]  Rastislav Bodík,et al.  Synthesis of biological models from mutation experiments , 2013, POPL.

[39]  Nicola Paoletti,et al.  Analyzing and Synthesizing Genomic Logic Functions , 2014, CAV.

[40]  Luca Cardelli,et al.  Chemical reaction network designs for asynchronous logic circuits , 2016, Natural Computing.

[41]  Chris Thachuk,et al.  DNA walker circuits: computational potential, design, and verification , 2013, Natural Computing.

[42]  Luca Bortolussi,et al.  Smoothed model checking for uncertain Continuous-Time Markov Chains , 2014, Inf. Comput..

[43]  Luca Cardelli,et al.  Response dynamics of phosphorelays suggest their potential utility in cell signalling , 2010, Journal of The Royal Society Interface.

[44]  Niall Murphy,et al.  Synthesizing and Tuning Chemical Reaction Networks with Specified Behaviours , 2015, DNA.

[45]  Joël Ouaknine,et al.  Some Recent Results in Metric Temporal Logic , 2008, FORMATS.

[46]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[47]  David Eisenstat,et al.  Fast computation by population protocols with a leader , 2006, Distributed Computing.

[48]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[49]  Edmund M. Clarke,et al.  δ-Complete Decision Procedures for Satisfiability over the Reals , 2012, IJCAR.

[50]  Radu Calinescu,et al.  Designing Robust Software Systems through Parametric Markov Chain Synthesis , 2017, 2017 IEEE International Conference on Software Architecture (ICSA).

[51]  Chris Thachuk,et al.  Probabilistic Model Checking for Biology , 2014, Software Systems Safety.

[52]  Ho-Lin Chen,et al.  Rate-independent computation in continuous chemical reaction networks , 2014, ITCS.

[53]  Michael Hardy Combinatorics of Partial Derivatives , 2006, Electron. J. Comb..

[54]  Luca Cardelli,et al.  Artificial Biochemistry , 2009, Algorithmic Bioprocesses.

[55]  Verena Wolf,et al.  Parameter Identification for Markov Models of Biochemical Reactions , 2011, CAV.