A Holistic Approach to Part Quality Prediction in Injection Molding Based on Machine Learning

All plastics processing companies have to fulfill the objectives of time, cost and quality. Against this background, those producing in high wage countries are especially challenged, because superior part quality is often the only possibility to prevail in competition. Since this leads to high expenses on quality assurance, for some time already efforts have been made to predict the quality of injection molded parts from process data using machine learning algorithms. However, these did not yet prevail in industry, mainly for two reasons: First, because of the inevitable learning effort that is required to set up a quality prediction model and second, because of the complexity in the application. Current research in the field of transfer learning aiming to shorten learning phases addresses the first challenge. In this paper, we present a holistic approach for the data analysis steps that are necessary once process and quality data have been generated, aiming to minimize the application effort for the operator. This includes the development and application of suitable algorithms for automatic selection of data, process features as well as machine learning algorithms including hyper-parameter optimization and model adaption. Combining the two approaches could bring quality prediction one significant step forward to successful industry application. Beyond this, the presented approach is universally applicable and can therefore be used for other plastics processing methods as well.

[1]  Chris H. Q. Ding,et al.  Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[2]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[3]  Lloyd A. Smith,et al.  Practical feature subset selection for machine learning , 1998 .

[4]  Ferat Sahin,et al.  A survey on feature selection methods , 2014, Comput. Electr. Eng..

[5]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[6]  Randall Matignon Data Mining Using SAS® Enterprise Miner™: Matignon/Data Mining , 2007 .

[7]  W. Michaeli,et al.  Einführung in die Kunststoffverarbeitung , 2015 .

[8]  D. Urban,et al.  Angewandte Regressionsanalyse: Theorie, Technik und Praxis , 2018 .

[9]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[10]  Adam Krzyzak,et al.  An affine invariant k-nearest neighbor regression estimate , 2012, J. Multivar. Anal..

[11]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[12]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[13]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[14]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[15]  Ryohei Nakano,et al.  Optimizing Support Vector regression hyperparameters based on cross-validation , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[16]  Yun Zhang,et al.  Intelligent methods for the process parameter determination of plastic injection molding , 2018, Frontiers of Mechanical Engineering.

[17]  Randall Matignon Data Mining Using SAS Enterprise Miner (Wiley Series in Computational Statistics) , 2007 .

[18]  Tony R. Martinez,et al.  Improved Heterogeneous Distance Functions , 1996, J. Artif. Intell. Res..

[19]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[20]  Tobias Meisen,et al.  Transfer-Learning: Bridging the Gap between Real and Simulation Data for Machine Learning in Injection Molding , 2018 .

[21]  Reinhard Schiffers Verbesserung der Prozessfähigkeit beim Spritzgießen durch Nutzung von Prozessdaten und eine neuartige Schneckenhubführung , 2009 .

[22]  Philipp Liedl Spitzenqualität mit kurzen Zyklen , 2010 .

[23]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[24]  Rickey Dubay,et al.  Integration of artificial intelligence in an injection molding process for on-line process parameter adjustment , 2018, 2018 Annual IEEE International Systems Conference (SysCon).

[25]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[26]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[27]  Torben Fischer,et al.  Von der Simulation in die Maschine - Objektivierte Prozesseinrichtung durch maschinelles Lernen , 2018 .

[28]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[29]  Bart De Moor,et al.  Hyperparameter Search in Machine Learning , 2015, ArXiv.

[30]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[31]  Walter Michaeli,et al.  Technologie des Spritzgießens: Lern- und Arbeitsbuch , 2017 .