A Holistic Approach to Part Quality Prediction in Injection Molding Based on Machine Learning
暂无分享,去创建一个
[1] Chris H. Q. Ding,et al. Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.
[2] Yoshua Bengio,et al. Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.
[3] Lloyd A. Smith,et al. Practical feature subset selection for machine learning , 1998 .
[4] Ferat Sahin,et al. A survey on feature selection methods , 2014, Comput. Electr. Eng..
[5] Mark A. Hall,et al. Correlation-based Feature Selection for Machine Learning , 2003 .
[6] Randall Matignon. Data Mining Using SAS® Enterprise Miner™: Matignon/Data Mining , 2007 .
[7] W. Michaeli,et al. Einführung in die Kunststoffverarbeitung , 2015 .
[8] D. Urban,et al. Angewandte Regressionsanalyse: Theorie, Technik und Praxis , 2018 .
[9] Sylvain Arlot,et al. A survey of cross-validation procedures for model selection , 2009, 0907.4728.
[10] Adam Krzyzak,et al. An affine invariant k-nearest neighbor regression estimate , 2012, J. Multivar. Anal..
[11] Josef Kittler,et al. Floating search methods in feature selection , 1994, Pattern Recognit. Lett..
[12] Isabelle Guyon,et al. An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..
[13] Larry A. Rendell,et al. The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.
[14] David G. Stork,et al. Pattern Classification (2nd ed.) , 1999 .
[15] Ryohei Nakano,et al. Optimizing Support Vector regression hyperparameters based on cross-validation , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..
[16] Yun Zhang,et al. Intelligent methods for the process parameter determination of plastic injection molding , 2018, Frontiers of Mechanical Engineering.
[17] Randall Matignon. Data Mining Using SAS Enterprise Miner (Wiley Series in Computational Statistics) , 2007 .
[18] Tony R. Martinez,et al. Improved Heterogeneous Distance Functions , 1996, J. Artif. Intell. Res..
[19] Ethem Alpaydin,et al. Introduction to machine learning , 2004, Adaptive computation and machine learning.
[20] Tobias Meisen,et al. Transfer-Learning: Bridging the Gap between Real and Simulation Data for Machine Learning in Injection Molding , 2018 .
[21] Reinhard Schiffers. Verbesserung der Prozessfähigkeit beim Spritzgießen durch Nutzung von Prozessdaten und eine neuartige Schneckenhubführung , 2009 .
[22] Philipp Liedl. Spitzenqualität mit kurzen Zyklen , 2010 .
[23] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[24] Rickey Dubay,et al. Integration of artificial intelligence in an injection molding process for on-line process parameter adjustment , 2018, 2018 Annual IEEE International Systems Conference (SysCon).
[25] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[26] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[27] Torben Fischer,et al. Von der Simulation in die Maschine - Objektivierte Prozesseinrichtung durch maschinelles Lernen , 2018 .
[28] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[29] Bart De Moor,et al. Hyperparameter Search in Machine Learning , 2015, ArXiv.
[30] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[31] Walter Michaeli,et al. Technologie des Spritzgießens: Lern- und Arbeitsbuch , 2017 .