Jacobi pseudospectral method for solving optimal control problems
暂无分享,去创建一个
[1] C. Hargraves,et al. DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .
[2] Bruce A. Conway,et al. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .
[3] B. Fornberg,et al. A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.
[4] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[5] A. L. Herman,et al. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .
[6] Gamal N. Elnagar,et al. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..
[7] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[8] Arthur E. Bryson,et al. Dynamic Optimization , 1998 .
[9] J. Betts. Survey of Numerical Methods for Trajectory Optimization , 1998 .
[10] William W. Hager,et al. Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..
[11] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[12] I. Michael Ross,et al. A Perspective on Methods for Trajectory Optimization , 2002 .
[13] I. Michael Ross,et al. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .
[14] Walter Gautschi,et al. High-order Gauss–Lobatto formulae , 2000, Numerical Algorithms.