Unconventional Algorithms: Complementarity of Axiomatics and Construction

In this paper, we analyze axiomatic and constructive issues of unconventional computations from a methodological and philosophical point of view. We explain how the new models of algorithms and unconventional computations change the algorithmic universe, making it open and allowing increased flexibility and expressive power that augment creativity. At the same time, the greater power of new types of algorithms also results in the greater complexity of the algorithmic universe, transforming it into the algorithmic multiverse and demanding new tools for its study. That is why we analyze new powerful tools brought forth by local mathematics, local logics, logical varieties and the axiomatic theory of algorithms, automata and computation. We demonstrate how these new tools allow efficient navigation in the algorithmic multiverse. Further work includes study of natural computation by unconventional algorithms and constructive approaches.

[1]  Marvin Minsky,et al.  Society of Mind: A Response to Four Reviews , 1991, Artif. Intell..

[2]  J. B. Roberts,et al.  Elements of the theory of functions , 1967 .

[3]  Mark Burgin,et al.  Super-Recursive Algorithms , 2004, Monographs in Computer Science.

[4]  Yehoshua Bar-Hillel,et al.  Foundations of Set Theory , 2012 .

[5]  John C. Shepherdson,et al.  Computability of Recursive Functions , 1963, JACM.

[6]  Susan Stepney,et al.  Journeys in non-classical computation I: A grand challenge for computing research , 2005, Parallel Algorithms Appl..

[7]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[8]  Nachum Dershowitz,et al.  A Natural Axiomatization of Computability and Proof of Church's Thesis , 2008, Bulletin of Symbolic Logic.

[9]  M. Hesse THE ENCYCLOPEDIA OF PHILOSOPHY , 1969 .

[10]  Dimitŭr Genchev Skordev Computability in Combinatory Spaces: An Algebraic Generalization Of Abstract First Order Computability , 2012 .

[11]  Andrei P. Ershov Abstract computability on algebraic structures , 1979, Algorithms in Modern Mathematics and Computer Science.

[12]  T. Grilliot Dissecting Abstract Recursion , 1974 .

[13]  H. Friedman Axiomatic Recursive Function Theory , 1971 .

[14]  N. M. Nagorny,et al.  The Theory of Algorithms , 1988 .

[15]  Charles Ehresmann Trends toward unity in mathematics , 1966 .

[16]  M. Burgin Measuring Power of Algorithms, Programs and Automata , 2010 .

[17]  W. Newton-Smith,et al.  A Companion to the Philosophy of Science , 2001 .

[18]  Jens Erik Fenstad Computation theories: An axiomatic approach to recursion on general structures , 1975 .

[19]  Dodig-CrnkovicGordana Significance of Models of Computation, from Turing Model to Natural Computation , 2011 .

[20]  Gordana Dodig-Crnkovic,et al.  From the Closed Classical Algorithmic Universe to an Open World of Algorithmic Constellations , 2012, ArXiv.

[21]  Martin Ziegler,et al.  Physically-relativized Church-Turing Hypotheses: Physical foundations of computing and complexity theory of computational physics , 2008, Appl. Math. Comput..

[22]  John Mylopoulos,et al.  Knowledge Representation: Features of Knowledge , 1985, Advanced Course: Fundamentals of Artificial Intelligence.

[23]  Stephen G. Simpson,et al.  Located sets and reverse mathematics , 2000, Journal of Symbolic Logic.

[24]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[25]  Mark Burgin,et al.  Knowlege-Based and Intelligent Information and Engineering Systems , 2011, Lecture Notes in Computer Science.

[26]  Arnold Schönhage Storage Modification Machines , 1980, SIAM J. Comput..

[27]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[28]  Mark Burgin Mathematical theory of information technology , 2009 .

[29]  Jon Barwise,et al.  Information Flow: The Logic of Distributed Systems , 1997 .

[30]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[31]  P. Howard,et al.  Consequences of the axiom of choice , 1998 .

[32]  Gordana Dodig-Crnkovic,et al.  A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic , 2009, ArXiv.

[33]  Tosiyasu L. Kunii The Potentials of Cyberworlds -An Axiomatic Approach- , 2004, CW.

[34]  Jeffry L. Hirst,et al.  Weak Comparability of Well Orderings and Reverse Mathematics , 1990, Ann. Pure Appl. Log..

[35]  J. L. Kelley,et al.  The Tychonoff product theorem implies the axiom of choice , 1950 .

[36]  Charles Ehresmann,et al.  Cahiers de topologie et géometrie différentielle , 1982 .

[37]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[38]  Martin Ziegler Physically-Relativized Church-Turing Hypotheses , 2008, ArXiv.

[39]  James Lyle Peterson,et al.  Petri net theory and the modeling of systems , 1981 .

[40]  Hanif D. Sherali,et al.  The Concept of an Algorithm , 2005 .

[41]  Simon Thompson Axiomatic Recursion Theory and the Continuous Functionals , 1985, J. Symb. Log..

[42]  Gordana Dodig-Crnkovic,et al.  Significance of Models of Computation, from Turing Model to Natural Computation , 2011, Minds and Machines.

[43]  Nachum Dershowitz,et al.  A Formalization of the Church-Turing Thesis for State-Transition Models , 2006 .

[44]  C. Petri Kommunikation mit Automaten , 1962 .

[45]  S. Barry Cooper,et al.  The Mathematician's Bias - and the Return to Embodied Computation , 2013, ArXiv.

[46]  Zohar Manna,et al.  Mathematical Theory of Computation , 2003 .

[47]  Mark Burgin Logical tools for program integration and interoperability , 2004, IASTED Conf. on Software Engineering and Applications.

[48]  斉藤 康己 Axiomatic Definitions of Programming Languages, A Theoretical Assessment(Preliminary Report) , 1980 .

[49]  A. G. Kurosh,et al.  Lectures on general algebra , 1966 .

[50]  Mark Burgin,et al.  Theory of Information - Fundamentality, Diversity and Unification , 2009, World Scientific Series in Information Studies.

[51]  J. Bell,et al.  From absolute to local mathematics , 1986, Synthese.