Decomposition of 13C-labelled wheat root systems following growth at different CO2 concentrations.

[1]  C. Körner,et al.  Soil moisture dynamics of calcareous grassland under elevated CO2 , 1998, Oecologia.

[2]  R. Norby,et al.  Global change: A question of litter quality , 1998, Nature.

[3]  P. Bohlen,et al.  Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2 , 1998, Oecologia.

[4]  A. Gorissen,et al.  In Situ Decomposition of Grass Roots as Affected by Elevated Atmospheric Carbon Dioxide , 1998 .

[5]  Hartley,et al.  Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems , 1998, Science.

[6]  P. Niklaus Effects of elevated atmospheric CO2 on soil microbiota in calcareous grassland , 1998 .

[7]  B. Griffiths,et al.  Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations, with observations on wheat rhizosphere , 1998 .

[8]  D. Smart,et al.  Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity , 1997, Applied and environmental microbiology.

[9]  A. Gorissen,et al.  Elevated CO2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. , 1997, The New phytologist.

[10]  A. Lüscher,et al.  Using stable isotopes to determine soil carbon input differences under ambient and elevated atmospheric CO2 conditions , 1997 .

[11]  J. Anderson,et al.  Plant litter quality and decomposition: an historical overview , 1997 .

[12]  A. Ball Microbial decomposition at elevated CO2 levels: effect of litter quality , 1997 .

[13]  Harold A. Mooney,et al.  Carbon dioxide and terrestrial ecosystems , 1997 .

[14]  S. Chasalow,et al.  Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat , 1997 .

[15]  A. Michelsen,et al.  Elevated atmospheric CO2 affects decomposition of Festuca vivipara (L.) Sm. litter and roots in experiments simulating environmental change in two contrasting arctic ecosystems , 1997 .

[16]  C. Field,et al.  Stimulation of grassland nitrogen cycling under carbon dioxide enrichment , 1997, Oecologia.

[17]  K. Giller,et al.  Driven by Nature: Plant Litter Quality and Decomposition , 1996 .

[18]  J. A. Veen,et al.  Long-term decomposition of grass roots as affected by elevated atmospheric carbon dioxide , 1996 .

[19]  P. Curtis,et al.  Elevated Atmospheric Carbon Dioxide and Leaf Litter Chemistry: Influences on Microbial Respiration and Net Nitrogen Mineralization , 1996 .

[20]  P. Högberg,et al.  Accelerated paperSubstrate-induced respiration measured in situ in a C3-plant ecosystem using additions of C4-sucrose , 1996 .

[21]  L. Pierson,et al.  Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression , 1996 .

[22]  D. C. Gordon,et al.  Plant growth chambers for the simultaneous control of soil and air temperatures, and of atmospheric carbon dioxide concentration , 1995 .

[23]  MICHAEL B. Jones,et al.  The effects of elevated CO2 concentrations on the root growth of Lolium perenne and Trifolium repens grown in a FACE* system , 1995 .

[24]  H. Rogers,et al.  Elevated Atmospheric Carbon Dioxide Effects on Cotton Plant Residue Decomposition , 1995 .

[25]  P. Pinter,et al.  Biodegradation of plant cell walls, wall carbohydrates, and wall aromatics in wheat grown in ambient or enriched CO2 concentrations , 1995 .

[26]  J. A. Veen,et al.  Root decay and turnover of rhizodeposits in field-grown winter wheat and spring barley estimated by 14C pulse-labelling , 1995 .

[27]  J. Nagy,et al.  Carbon isotope dynamics of free-air CO2-enriched cotton and soils , 1994 .

[28]  R. Norby,et al.  6 – Litter Quality and Decomposition Rates of Foliar Litter Produced under CO2 Enrichment , 1993 .

[29]  J. Conroy,et al.  Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations , 1993 .

[30]  C. Owensby,et al.  Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide , 1993 .

[31]  E. C. Large GROWTH STAGES IN CEREALS ILLUSTRATION OF THE FEEKES SCALE , 1954 .

[32]  J. Conroy,et al.  A possible plant-mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect , 1998 .

[33]  P. Kuikman,et al.  Climate change: the potential to affect ecosystem functions through changes in amount and quality of litter. , 1997 .

[34]  F. Chapin,et al.  Elevated CO2 and nutrient addition after soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland , 1997 .

[35]  F. Chapin,et al.  Decomposition of litter produced under elevated CO2: Dependence on plant species and nutrient supply , 1997 .

[36]  J. Balesdent,et al.  Measurement of soil organic matter turnover using 13C natural abundance. , 1996 .

[37]  T. Boutton,et al.  Mass spectrometry of soils , 1996 .

[38]  J. Keurentjes,et al.  Grass root decomposition is retarded when grass has been grown under elevated CO2. Short Communication , 1995 .

[39]  Sue J. Welham,et al.  Genstat 5 release 3 reference manual , 1994 .