Construction of a p-Adaptive Continuous Residual Distribution Scheme

A p-adaptive continuous residual distribution scheme is proposed in this paper. Under certain conditions, primarily the expression of the total residual on a given element K into residuals on the sub-elements of K and the use of a suitable combination of quadrature formulas, it is possible to change locally the degree of the polynomial approximation of the solution. The discrete solution can then be considered non continuous across the interface of elements of different orders, while the numerical scheme still verifies the hypothesis of the discrete Lax–Wendroff theorem which ensures its convergence to a correct weak solution. We detail the theoretical material and the construction of our p-adaptive method in the frame of a continuous residual distribution scheme. Different test cases for non-linear equations at different flow velocities demonstrate numerically the validity of the theoretical results.

[1]  S. Sherwin,et al.  An isoparametric approach to high-order curvilinear boundary-layer meshing , 2015 .

[2]  N. Ron-Ho,et al.  A Multiple-Grid Scheme for Solving the Euler Equations , 1982 .

[3]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..

[4]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[5]  Ralf Hartmann,et al.  Discontinuous Galerkin methods for compressible flows: higher order accuracy, error estimation and adaptivity , 2006 .

[6]  R. Abgrall,et al.  An Example of High Order Residual Distribution Scheme Using non-Lagrange Elements , 2010, J. Sci. Comput..

[7]  Rémi Abgrall,et al.  High Order Fluctuation Schemes on Triangular Meshes , 2003, J. Sci. Comput..

[8]  Juan Cheng,et al.  High Order Schemes for CFD : A Review , 2022 .

[9]  M. Ricchiuto Contributions to the development of residual discretizations for hyperbolic conservation laws with application to shallow water flows , 2011 .

[10]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[11]  Rémi Abgrall,et al.  Toward the ultimate conservative scheme: following the quest , 2001 .

[12]  Alexander Düster,et al.  Book Review: Leszek Demkowicz, Computing with hp‐adaptive finite elements, Volume 1, One and two dimensional elliptic and Maxwell problems , 2007 .

[13]  Rémi Abgrall,et al.  Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems , 2006, J. Comput. Phys..

[14]  W. K. Anderson,et al.  High-Order Finite-Element Method and Dynamic Adaptation for Two-Dimensional Laminar and Turbulent Navier-Stokes , 2014 .

[15]  Ivo Babuška,et al.  The h, p and h-p version of the finite element method: basis theory and applications , 1992 .

[16]  Philip L. Roe,et al.  Multidimensional upwind schemes based on fluctuation-splitting for systems of conservation laws , 1993 .

[17]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[18]  Rémi Abgrall,et al.  Residual Distribution Schemes for Conservation Laws via Adaptive Quadrature , 2013, SIAM J. Sci. Comput..

[19]  Shu-Man Chi,et al.  High Order Schemes for CFD:A Review , 2009 .

[20]  Marjorie A. McClain,et al.  A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2014, ACM Trans. Math. Softw..

[21]  Z J Wang,et al.  High-order computational fluid dynamics tools for aircraft design , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[23]  P. Roe,et al.  Compact advection schemes on unstructured grids , 1993 .

[24]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[25]  C. Ross Ethier,et al.  A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..

[26]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[27]  Rémi Abgrall,et al.  Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes , 2011, J. Comput. Phys..

[28]  John A. Ekaterinaris,et al.  High-order accurate, low numerical diffusion methods for aerodynamics , 2005 .

[29]  John Chapman,et al.  Implementation of the Continuous-Discontinuous Galerkin Finite Element Method , 2012, ArXiv.