SISO Method Using Modified Pole Clustering and Simulated Annealing Algorithm

[1]  C. Vishwakarma,et al.  Biased reduction method by combining improved modified pole clustering and improved Pade approximations , 2016 .

[2]  R. Prasad,et al.  Time domain model order reduction using Hankel matrix approach , 2014, Journal of the Franklin Institute.

[3]  C. B. Vishwakarma,et al.  MIMO System Using Eigen Algorithm and Improved Pade Approximations , 2014 .

[4]  Kalyan Chatterjee,et al.  System Reduction by Eigen Permutation Algorithm and Improved Pade Approximations , 2014 .

[5]  G. Parmar,et al.  System reduction using factor division algorithm and eigen spectrum analysis , 2007 .

[6]  R. C. Mittal,et al.  Model order reduction using response-matching technique , 2005, J. Frankl. Inst..

[7]  Shyam Krishna Nagar,et al.  An algorithmic approach for system decomposition and balanced realized model reduction , 2004, J. Frankl. Inst..

[8]  Jayanta Pal,et al.  Simulation based reduced order modeling using a clustering technique , 1990 .

[9]  C. Therapos,et al.  Internally balanced minimal realization of discrete SISO systems , 1985 .

[10]  J. Pal Improved Padé approximants using stability equation method , 1983 .

[11]  Naresh K. Sinha,et al.  Optimum approximation of high-order systems by low-order models† , 1971 .

[12]  R. Prasad,et al.  MIMO system reduction using modified pole clustering and genetic algorithm , 2009 .

[13]  S. Mukherjee,et al.  Reduced order modelling of linear multivariable systems using an error minimization technique , 1988 .

[14]  S. Mukherjee,et al.  Order reduction of linear systems using an error minimization technique , 1987 .