Towards robotic self-reassembly after explosion

This paper introduces a new challenge problem: designing robotic systems to recover after disassembly from high-energy events and a first implemented solution of a simplified problem. It uses vision-based localization for self- reassembly. The control architecture for the various states of the robot, from fully-assembled to the modes for sequential docking, are explained and inter-module communication details for the robotic system are described.

[1]  Mark Yim,et al.  Dynamic Rolling for a Modular Loop Robot , 2006, ISER.

[2]  Trevor Darrell,et al.  Simultaneous calibration and tracking with a network of non-overlapping sensors , 2004, CVPR 2004.

[3]  Mark Yim,et al.  Automatic Configuration Recognition Methods in Modular Robots , 2008, Int. J. Robotics Res..

[4]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[5]  Satoshi Murata,et al.  Docking Experiments of a Modular Robot by Visual Feedback , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Martin Nilsson Heavy-duty connectors for self-reconfiguring robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  Benjamin Grocholsky,et al.  The robotics bus: a local communications bus for robots , 2004, SPIE Optics East.

[8]  Wayne H. Wolf,et al.  A peer-to-peer architecture for distributed real-time gesture recognition , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[9]  Wu-chi Feng,et al.  Panoptes: scalable low-power video sensor networking technologies , 2003, ACM Multimedia.

[10]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[11]  Luca Maria Gambardella,et al.  The cooperation of swarm-bots: physical interactions in collective robotics , 2005, IEEE Robotics & Automation Magazine.

[12]  Ying Zhang,et al.  Connecting and disconnecting for chain self-reconfiguration with PolyBot , 2002 .

[13]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Ramesh Raskar,et al.  Image-based visual hulls , 2000, SIGGRAPH.

[15]  Arancha Casal,et al.  Self-reconfiguration planning for a class of modular robots , 1999, Optics East.

[16]  Camillo J. Taylor,et al.  Self Localizing Smart Camera Networks and their Applications to 3 D Modeling , 2006 .

[17]  Gregory S. Chirikjian,et al.  Robotic Self-Repair in a Semi-Structured Environment , 2004 .

[18]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[19]  Wei-Min Shen,et al.  Docking in self-reconfigurable robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  Mark Vim,et al.  Climbing with Snake-Like Robots , 2001 .

[21]  Mark Yim,et al.  Robustness and self-repair in modular robots , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Eiichi Yoshida,et al.  Hardware design of modular robotic system , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[23]  Srinivasan Seshan,et al.  IrisNet: an internet-scale architecture for multimedia sensors , 2005, MULTIMEDIA '05.