On iterative learning from different tracking tasks in the presence of time-varying uncertainties

In this paper, we introduce a new iterative learning control (ILC) method, which enables learning from different tracking control tasks. The proposed method overcomes the imitation of traditional ILC in that, the target trajectories of any two consecutive iterations can be completely different. For non-linear systems with time-varying and time-invariant parametric uncertainties, the new learning method works effectively to nullify the tracking error. To facilitate the learning control system design and analysis, in the paper we use a composite energy function (CEF) index, which consists of a positive scalar function and L2 norm of the function approximation error.

[1]  Tao Zhu,et al.  Dual-scale direct learning control of trajectory tracking for a class of nonlinear uncertain systems , 1999, IEEE Trans. Autom. Control..

[2]  Tommy W. S. Chow,et al.  Iterative Learning Control of Linear Discrete-Time Multivariable Systems , 1998, Autom..

[3]  Jian-Xin Xu Analysis of Iterative Learning Control for a Class of Nonlinear Discrete-time Systems , 1997, Autom..

[4]  Marlin H. Mickle,et al.  Learning control algorithms for tracking "slowly" varying trajectories , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[5]  H. Kang,et al.  Optimal control of nonlinear stochastic systems , 1971 .

[6]  M. Dahleh,et al.  Design techniques for transient response control , 1989 .

[7]  Mingxuan Sun,et al.  Iterative learning control with initial rectifying action , 2002, Autom..

[8]  Richard W. Longman,et al.  Iterative learning control and repetitive control for engineering practice , 2000 .

[9]  D. Hwang,et al.  Iterative learning control method for discrete-time dynamic systems , 1991 .

[10]  J. Kurek,et al.  Iterative learning control synthesis based on 2-D system theory , 1993, IEEE Trans. Autom. Control..

[11]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[12]  K. Moore,et al.  ON MONOTONIC CONVERGENCE OF HIGH ORDER ITERATIVE LEARNING UPDATE LAWS , 2002 .

[13]  Kwang-Hyun Park,et al.  A generalized iterative learning controller against initial state error , 2000 .

[14]  Ferenc Szidarovszky,et al.  Modeling uncertainty : an examination of stochastic theory, methods, and applications , 2002 .

[15]  M. Steinbuch,et al.  Internal-model-based design of repetitive and iterative learning controllers for linear multivariable systems , 2000 .

[16]  Ying Tan,et al.  A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties , 2002, IEEE Trans. Autom. Control..

[17]  Ser Yong Lim,et al.  Iterative learning control of permanent magnet linear motor with relay automatic tuning , 2000 .

[18]  Jian-Xin Xu,et al.  Iterative Learning Control , 1998 .

[19]  Gao Wei-hua Closed-Loop Iterative Learning Control for General Nonlinear Discrete System , 2001 .

[20]  Zeungnam Bien,et al.  Iterative learning control: analysis, design, integration and applications , 1998 .

[21]  Warren E. Dixon,et al.  Repetitive learning control: a Lyapunov-based approach , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[22]  Hyun Min Do,et al.  A learning approach of wafer temperature control in a rapid thermal processing system , 2001 .

[23]  Chiang-Ju Chien,et al.  A sampled-data iterative learning control using fuzzy network design , 2000 .

[24]  Mingxuan Sun,et al.  An iterative learning controller with initial state learning , 1999, IEEE Trans. Autom. Control..

[25]  C. Cheah,et al.  A model reference learning control scheme for a class of nonlinear systems , 1997 .

[26]  M. French,et al.  Non-linear iterative learning by an adaptive Lyapunov technique , 2000 .

[27]  Toshiharu Sugie,et al.  Iterative Learning Control for Robot Manipulators Using The Finite Dimensional Input Subspace , 2001 .

[28]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.