Ultraslow Dynamics of a Framework Linker in MIL-53 (Al) as a Sensor for Different Isomers of Xylene

MIL-53 (Al) is an important example of metal–organic frameworks (MOFs) with a flexible framework capable to efficiently separate ortho and para isomers of xylene at moderate temperatures. The MIL-53 MOF contains mobile terephthalate phenylene fragments that can be used as a dynamic probe to investigate the guest–host interactions and the origin of the separation selectivity. Here 2H NMR spin alignment echo technique for the first time was applied to probe ultraslow structural mobility (0.1–1 kHz) in MOFs materials, with particular application to MIL-53(Al) saturated with ortho or para isomers of xylene. A specific influence of different isomers of xylene adsorbed in the MOF pores on the rotation of the phenylenes in MIL-53 for the temperature range with proved separation selectivity (T < 393 K) is shown. It has been established that the rotation of phenylene fragments is sensitive to the type of xylene isomer. The phenylenes’ rotation performs 1 order of magnitude slower in the presence of o-xylene (korth...

[1]  A. Stepanov,et al.  Metal-Cation-Independent Dynamics of Phenylene Ring in Microporous MOFs: A 2H Solid-State NMR Study , 2015 .

[2]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[3]  A. Stepanov,et al.  Guest Controlled Rotational Dynamics of Terephthalate Phenylenes in Metal–Organic Framework MIL-53(Al): Effect of Different Xylene Loadings , 2014 .

[4]  C. Serre,et al.  Ligand Dynamics of Drug-Loaded Microporous Zirconium Terephthalates-Based Metal–Organic Frameworks: Impact of the Nature and Concentration of the Guest , 2014 .

[5]  P. Sozzani,et al.  Molecular rotors in porous organic frameworks. , 2014, Angewandte Chemie.

[6]  C. Serre,et al.  Caffeine Confinement into a Series of Functionalized Porous Zirconium MOFs: A Joint Experimental/Modeling Exploration , 2013 .

[7]  Kimoon Kim,et al.  Proton conduction in metal-organic frameworks and related modularly built porous solids. , 2013, Angewandte Chemie.

[8]  Lijuan Song,et al.  Adsorption and diffusion properties of xylene isomers and ethylbenzene in metal–organic framework MIL-53(Al) , 2013, Journal of Porous Materials.

[9]  D. Vos,et al.  Unusual pressure-temperature dependency in the capillary liquid chromatographic separation of C8 alkylaromatics on the MIL-53(Al) metal-organic framework , 2012 .

[10]  D. Dybtsev,et al.  Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. , 2012, Journal of the American Chemical Society.

[11]  R. Griffin,et al.  Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. , 2012, Journal of the American Chemical Society.

[12]  C. Serre,et al.  Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations , 2012 .

[13]  M. Pera‐Titus,et al.  Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53 , 2012 .

[14]  J. V. van Bokhoven,et al.  Catalysis by metal-organic frameworks: fundamentals and opportunities. , 2011, Physical chemistry chemical physics : PCCP.

[15]  C. Serre,et al.  Comparison of the dynamics of MIL-53(Cr) and MIL-47(V) frameworks using neutron scattering and DFT methods , 2010 .

[16]  C. Serre,et al.  Dynamics of benzene rings in MIL-53(Cr) and MIL-47(V) frameworks studied by 2H NMR spectroscopy. , 2010, Angewandte Chemie.

[17]  François-Xavier Coudert,et al.  Breathing transitions in MIL-53(Al) metal-organic framework upon xenon adsorption. , 2009, Angewandte Chemie.

[18]  D. D. De Vos,et al.  Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal-organic framework MIL-53. , 2009, Chemistry.

[19]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[20]  L. Giebeler,et al.  Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53. , 2008, Journal of the American Chemical Society.

[21]  N. Maksimchuk,et al.  Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates , 2008 .

[22]  H. Verelst,et al.  Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47. , 2008, Journal of the American Chemical Society.

[23]  Miguel A. Garcia-Garibay,et al.  Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. , 2008, Journal of the American Chemical Society.

[24]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[25]  M. A. van der Veen,et al.  Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. , 2007, Angewandte Chemie.

[26]  S. Kitagawa,et al.  Dynamic motion of building blocks in porous coordination polymers. , 2006, Angewandte Chemie.

[27]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[28]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[29]  G. Drobny,et al.  Observation of a distinct transition in the mode of interconversion of ring pucker conformers in non-crystalline d-ribose-2′-d from 2H NMR spin-alignment , 2003, Journal of biomolecular NMR.

[30]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[31]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[32]  E. Olejniczak,et al.  Analysis of deuterium nuclear magnetic resonance line shapes in anisotropic media , 1987 .

[33]  H. Spiess,et al.  Deuteron spin alignment spectra of powders in presence of ultraslow motions , 1983 .

[34]  E. Meirovitch,et al.  Quadrupole echo study of internal motions in polycrystalline media , 1983 .

[35]  A. Szabó,et al.  Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. , 1980, Biophysical journal.

[36]  H. Spiess,et al.  Ultraslow tetrahedral jumps in solid hexamethylenetetramine studied by deuteron spin alignment , 1980 .

[37]  A. Szabó,et al.  Theory of NMR relaxation in macromolecules: Restricted diffusion and jump models for multiple internal rotations in amino acid side chains , 1978 .

[38]  Jean Jeener,et al.  Nuclear Magnetic Resonance in Solids: Thermodynamic Effects of a Pair of rf Pulses , 1967 .