Computing the metric dimension of graphs by genetic algorithms
暂无分享,去创建一个
Jozef Kratica | Mirjana Cangalovic | Vera Kovacevic-Vujcic | M. Cangalovic | J. Kratica | V. Kovacevic-Vujcic | Jozef J. Kratica
[1] Günther R. Raidl,et al. Empirical Analysis of Locality, Heritability and Heuristic Bias in Evolutionary Algorithms: A Case Study for the Multidimensional Knapsack Problem , 2005, Evolutionary Computation.
[2] Wei Li,et al. Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..
[3] Jozef Kratica,et al. Solving the uncapacitated Multiple Allocation P-Hub Center Problem by Genetic Algorithm , 2006, Asia Pac. J. Oper. Res..
[4] Zbigniew Michalewicz,et al. Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .
[5] Jozef Kratica,et al. Improving Performances of the Genetic Algorithm by Caching , 1999, Comput. Artif. Intell..
[6] Jozef Kratica,et al. Genetic Algorithm for Solving Uncapacitated Multiple Allocation Hub Location Problem , 2005, Comput. Artif. Intell..
[7] Thomas Stützle,et al. Ant Colony Optimization , 2009, EMO.
[8] James D. Currie,et al. The metric dimension and metric independence of a graph , 2001 .
[9] Zorica Stanimirović,et al. An efficient genetic algorithm for the uncapacitated multiple allocation p-hub median problem , 2008 .
[10] Alfonsas Misevicius,et al. A Tabu Search Algorithm for the Quadratic Assignment Problem , 2005, Comput. Optim. Appl..
[11] Jozef Kratica,et al. Genetic algorithms for solving the discrete ordered median problem , 2007, Eur. J. Oper. Res..
[12] Pierre Hansen,et al. On some interconnections between combinatorial optimization and extremal graph theory , 2004 .
[13] Ping Zhang,et al. On Connected Resolving Decompositions in Graphs , 2003 .
[14] Ortrud R. Oellermann,et al. The metric dimension of Cayley digraphs , 2006, Discret. Math..
[15] Ping Zhang,et al. Connected Resolvability of Graphs , 2003, Australas. J Comb..
[16] Zbigniew Michalewicz,et al. Evolutionary Computation 1 , 2018 .
[17] John E. Beasley,et al. Obtaining test problems via Internet , 1996, J. Glob. Optim..
[18] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[19] Mirjana Cangalovic,et al. General variable neighborhood search for the continuous optimization , 2006, Eur. J. Oper. Res..
[20] Shyamal Kumar Mondal,et al. A single period inventory model of a deteriorating item sold from two shops with shortage via genetic algorithm , 2007 .
[21] Pierre Hansen,et al. Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..
[22] José Cáceres,et al. On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..
[23] Jano I. van Hemert,et al. Improving Graph Colouring Algorithms and Heuristics Using a Novel Representation , 2006, EvoCOP.
[24] Glenn G. Chappell,et al. Bounds on the metric and partition dimensions of a graph , 2008, Ars Comb..
[25] Matteo Fischetti,et al. An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem , 2006, Math. Program..
[26] Azriel Rosenfeld,et al. Landmarks in Graphs , 1996, Discret. Appl. Math..
[27] Charles Fleurent,et al. Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..
[28] Jozef Kratica,et al. Discrete Optimization Two genetic algorithms for solving the uncapacitated single allocation p-hub median problem , 2007 .
[29] Gary Chartrand,et al. Resolvability and the upper dimension of graphs , 2000 .
[30] J. Kratica,et al. Fine Grained Tournament Selection for the Simple Plant Location Problem , 2002 .
[31] J. Beasley,et al. A tree search algorithm for the crew scheduling problem , 1996 .
[32] Günther R. Raidl,et al. The Core Concept for the Multidimensional Knapsack Problem , 2006, EvoCOP.
[33] Peter Merz,et al. Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.
[34] Yves Rochat,et al. Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.
[35] Gary Chartrand,et al. Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..
[36] David B. Fogel,et al. Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .
[37] Zbigniew Michalewicz,et al. Evolutionary Computation 2 , 2000 .
[38] Vladimir Filipovic,et al. Fine-grained Tournament Selection Operator in Genetic Algorithms , 2003, Comput. Artif. Intell..
[39] Alain Hertz,et al. Guidelines for the use of meta-heuristics in combinatorial optimization , 2003, Eur. J. Oper. Res..
[40] Günther R. Raidl,et al. A Memetic Algorithm for Minimum-Cost Vertex-Biconnectivity Augmentation of Graphs , 2003, J. Heuristics.
[41] David R. Wood,et al. On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..
[42] Panos M. Pardalos,et al. Handbook of applied optimization , 2002 .