Computing the metric dimension of graphs by genetic algorithms

Abstract In this paper we consider the NP-hard problem of determining the metric dimension of graphs. We propose a genetic algorithm (GA) that uses the binary encoding and the standard genetic operators adapted to the problem. The feasibility is enforced by repairing the individuals. The overall performance of the GA implementation is improved by a caching technique. Since the metric dimension problem up to now has been considered only theoretically, standard test instances for this problem do not exist. For that reason, we present the results of the computational experience on several sets of test instances for other NP-hard problems: pseudo boolean, crew scheduling and graph coloring. Testing on instances with up to 1534 nodes shows that GA relatively quickly obtains approximate solutions. For smaller instances, GA solutions are compared with CPLEX results. We have also modified our implementation to handle theoretically challenging large-scale classes of hypercubes and Hamming graphs. In this case the presented approach reaches optimal or best known solutions for hypercubes up to 131072 nodes and Hamming graphs up to 4913 nodes.

[1]  Günther R. Raidl,et al.  Empirical Analysis of Locality, Heritability and Heuristic Bias in Evolutionary Algorithms: A Case Study for the Multidimensional Knapsack Problem , 2005, Evolutionary Computation.

[2]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[3]  Jozef Kratica,et al.  Solving the uncapacitated Multiple Allocation P-Hub Center Problem by Genetic Algorithm , 2006, Asia Pac. J. Oper. Res..

[4]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[5]  Jozef Kratica,et al.  Improving Performances of the Genetic Algorithm by Caching , 1999, Comput. Artif. Intell..

[6]  Jozef Kratica,et al.  Genetic Algorithm for Solving Uncapacitated Multiple Allocation Hub Location Problem , 2005, Comput. Artif. Intell..

[7]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[8]  James D. Currie,et al.  The metric dimension and metric independence of a graph , 2001 .

[9]  Zorica Stanimirović,et al.  An efficient genetic algorithm for the uncapacitated multiple allocation p-hub median problem , 2008 .

[10]  Alfonsas Misevicius,et al.  A Tabu Search Algorithm for the Quadratic Assignment Problem , 2005, Comput. Optim. Appl..

[11]  Jozef Kratica,et al.  Genetic algorithms for solving the discrete ordered median problem , 2007, Eur. J. Oper. Res..

[12]  Pierre Hansen,et al.  On some interconnections between combinatorial optimization and extremal graph theory , 2004 .

[13]  Ping Zhang,et al.  On Connected Resolving Decompositions in Graphs , 2003 .

[14]  Ortrud R. Oellermann,et al.  The metric dimension of Cayley digraphs , 2006, Discret. Math..

[15]  Ping Zhang,et al.  Connected Resolvability of Graphs , 2003, Australas. J Comb..

[16]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[17]  John E. Beasley,et al.  Obtaining test problems via Internet , 1996, J. Glob. Optim..

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  Mirjana Cangalovic,et al.  General variable neighborhood search for the continuous optimization , 2006, Eur. J. Oper. Res..

[20]  Shyamal Kumar Mondal,et al.  A single period inventory model of a deteriorating item sold from two shops with shortage via genetic algorithm , 2007 .

[21]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[22]  José Cáceres,et al.  On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..

[23]  Jano I. van Hemert,et al.  Improving Graph Colouring Algorithms and Heuristics Using a Novel Representation , 2006, EvoCOP.

[24]  Glenn G. Chappell,et al.  Bounds on the metric and partition dimensions of a graph , 2008, Ars Comb..

[25]  Matteo Fischetti,et al.  An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem , 2006, Math. Program..

[26]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[27]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[28]  Jozef Kratica,et al.  Discrete Optimization Two genetic algorithms for solving the uncapacitated single allocation p-hub median problem , 2007 .

[29]  Gary Chartrand,et al.  Resolvability and the upper dimension of graphs , 2000 .

[30]  J. Kratica,et al.  Fine Grained Tournament Selection for the Simple Plant Location Problem , 2002 .

[31]  J. Beasley,et al.  A tree search algorithm for the crew scheduling problem , 1996 .

[32]  Günther R. Raidl,et al.  The Core Concept for the Multidimensional Knapsack Problem , 2006, EvoCOP.

[33]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[34]  Yves Rochat,et al.  Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.

[35]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[36]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[37]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[38]  Vladimir Filipovic,et al.  Fine-grained Tournament Selection Operator in Genetic Algorithms , 2003, Comput. Artif. Intell..

[39]  Alain Hertz,et al.  Guidelines for the use of meta-heuristics in combinatorial optimization , 2003, Eur. J. Oper. Res..

[40]  Günther R. Raidl,et al.  A Memetic Algorithm for Minimum-Cost Vertex-Biconnectivity Augmentation of Graphs , 2003, J. Heuristics.

[41]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[42]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .