Dielectrophoretic-activated cell sorter based on curved microelectrodes

This article presents the numerical and experimental analysis of a dielectrophoretic-activated cell sorter (DACS), which is equipped with curved microelectrodes. Curved microelectrodes offer unique advantages, since they create strong dielectrophoretic (DEP) forces over the tips and maintain it over a large portion of their structure, as predicted by simulations. The performance of the system is assessed using yeast (Saccharomyces cerevisiae) cells as model organisms. The separation of the live and dead cells is demonstrated at different medium conductivities of 0.001 and 0.14 S/m, and the sorting performance was assessed using a second array of microelectrodes patterned downstream the microchannel. Further, microscopic cell counting analysis reveals that a single pass through the system yields a separating efficiency of ~80% at low medium conductivities and ~85% at high medium conductivities.

[1]  Roberto Guerrieri,et al.  Applications to Cancer Research of “Lab-on-a-chip” Devices Based on Dielectrophoresis (DEP) , 2003, Technology in cancer research & treatment.

[2]  Matsuhiko Nishizawa,et al.  Selective capture of a specific cell type from mixed leucocytes in an electrode-integrated microfluidic device. , 2009, Biosensors & bioelectronics.

[3]  J. Voldman,et al.  Dielectrophoretic registration of living cells to a microelectrode array. , 2004, Biosensors & bioelectronics.

[4]  Elisabeth Smela,et al.  Multiple frequency dielectrophoresis , 2007, Electrophoresis.

[5]  R. Pethig,et al.  Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis. , 2007, IET nanobiotechnology.

[6]  Zurina Zainal Abidin,et al.  High-gradient electric field system for the dielectrophoretic separation of cells , 2005 .

[7]  Kourosh Kalantar-zadeh,et al.  Nanotechnology-Enabled Sensors , 2007 .

[8]  Bernard Yurke,et al.  Dielectrophoretic trapping of DNA origami. , 2008, Small.

[9]  Peter R. C. Gascoyne,et al.  Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments , 2004, Proceedings of the IEEE.

[10]  R. Hölzel,et al.  Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. , 1997, Biophysical journal.

[11]  R. Bashir,et al.  Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes , 2002 .

[12]  Young-Ho Cho,et al.  A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process , 2005 .

[13]  J. Thomson,et al.  Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels , 2008, Electrophoresis.

[14]  E. Kovács,et al.  Orientation behavior of retinal photoreceptors in alternating electric fields. , 2005, Biophysical journal.

[15]  H. John Crabtree,et al.  Continuous dielectrophoretic cell separation microfluidic device. , 2007, Lab on a chip.

[16]  X. Wang,et al.  Role of peroxide in AC electrical field exposure effects on friend murine erythroleukemia cells during dielectrophoretic manipulations. , 1999, Biochimica et biophysica acta.

[17]  Martin Stelzle,et al.  Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis , 2006, Electrophoresis.

[18]  Saeid Nahavandi,et al.  At a glance: Cellular biology for engineers , 2008, Comput. Biol. Chem..

[19]  Y. Huang,et al.  Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. , 1992, Physics in medicine and biology.

[20]  J. E. Duarte,et al.  Non-uniform electric field-induced yeast cell electrokinetic behavior , 2008, Ingeniería e Investigación.

[21]  F. Becker,et al.  Isolation of rare cells from cell mixtures by dielectrophoresis , 2009, Electrophoresis.

[22]  R. Pethig,et al.  The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests. , 1996, Bone marrow transplantation.

[23]  V. L. Kononenko,et al.  Stationary deformations of erythrocytes by high-frequency electric field. , 2000, Bioelectrochemistry.

[24]  Paul H. Bessette,et al.  Marker-specific sorting of rare cells using dielectrophoresis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Jackson,et al.  Microtubule alignment and manipulation using AC electrokinetics. , 2008, Small.

[26]  Yuejun Kang,et al.  Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle , 2009 .

[27]  Lung-Ming Fu,et al.  Manipulation of microparticles using new modes of traveling-wave-dielectrophoretic forces: numerical Simulation and experiments , 2004 .

[28]  N. Aubry,et al.  Dielectrophoresis induced clustering regimes of viable yeast cells , 2005, Electrophoresis.

[29]  W Krassowska,et al.  Response of a single cell to an external electric field. , 1994, Biophysical journal.

[30]  C. Dalton,et al.  Analysis of parasites by electrorotation , 2004, Journal of applied microbiology.

[31]  K. Jensen,et al.  Cells on chips , 2006, Nature.

[32]  Saeid Nahavandi,et al.  Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes , 2009, Electrophoresis.

[33]  S. Gawad,et al.  Single cell dielectric spectroscopy , 2007 .

[34]  M. Neek-Amal,et al.  Electric field effects on Nano-Scale bio-membrane of spherical cells , 2009 .

[35]  A. Mitchell,et al.  Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems , 2009, Analytical and bioanalytical chemistry.

[36]  H. Andersson,et al.  Microfluidic devices for cellomics: a review , 2003 .

[37]  Joe S. Crane,et al.  A Study of Living and Dead Yeast Cells Using Dielectrophoresis , 1968 .

[38]  M. Hughes,et al.  Rapid determination of antibiotic resistance in E. coli using dielectrophoresis , 2007, Physics in Medicine and Biology.

[39]  Elisa Michelini,et al.  Field-flow fractionation in bioanalysis: A review of recent trends. , 2009, Analytica chimica acta.

[40]  S. Kim,et al.  Dielectrophoretic tweezers using sharp probe electrode , 2007 .

[41]  Joachim O Rädler,et al.  Light-induced dielectrophoretic manipulation of DNA. , 2007, Biophysical journal.

[42]  Jörg P Kutter,et al.  Dielectrophoresis microsystem with integrated flow cytometers for on‐line monitoring of sorting efficiency , 2006, Electrophoresis.

[43]  S. Baratchi,et al.  Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases , 2009 .

[44]  H Morgan,et al.  Separation of submicron bioparticles by dielectrophoresis. , 1999, Biophysical journal.

[45]  Yuejun Kang,et al.  Continuous particle separation by size via AC‐dielectrophoresis using a lab‐on‐a‐chip device with 3‐D electrodes , 2009, Electrophoresis.

[46]  David Issadore,et al.  Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. , 2008, Lab on a chip.

[47]  Hui-Sung Moon,et al.  Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. , 2009, Environmental science & technology.

[48]  R. Pethig,et al.  Separation of viable and non-viable yeast using dielectrophoresis. , 1994, Journal of biotechnology.

[49]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[50]  J. Voldman Electrical forces for microscale cell manipulation. , 2006, Annual review of biomedical engineering.

[51]  Hakho Lee,et al.  Addressable micropost array for the dielectrophoretic manipulation of particles in fluid , 2004 .

[52]  Maria Dimaki,et al.  Manipulation of biological samples using micro and nano techniques. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[53]  Dongqing Li,et al.  Effect of Joule heating on electrokinetic transport , 2008, Electrophoresis.

[54]  W. Wlodarski,et al.  Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles , 2009 .

[55]  W. M. Arnold,et al.  Positioning and levitation media for the separation of biological cells , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[56]  Ciprian Iliescu,et al.  Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes. , 2009, Biomicrofluidics.

[57]  J. L. Sebastian,et al.  Dielectric characterization of bacterial cells using dielectrophoresis , 2007, Bioelectromagnetics.

[58]  Hywel Morgan,et al.  AC ELECTROKINETICS: COLLOIDS AND NANOPARTICLES. , 2002 .

[59]  W. Mike Arnold,et al.  Cell isolation and growth in electric-field defined micro-wells , 2006 .

[60]  H. O. Fatoyinbo,et al.  A high-throughput 3-D composite dielectrophoretic separator , 2005, IEEE Transactions on Biomedical Engineering.

[61]  Jutamaad Satayavivad,et al.  Microfluidic approaches to malaria detection. , 2004, Acta tropica.

[62]  Sonia Grego,et al.  An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[63]  C. H. Kua,et al.  Dynamic cell fractionation and transportation using moving dielectrophoresis. , 2007, Analytical chemistry.