The Genome of Winter Moth (Operophtera brumata) Provides a Genomic Perspective on Sexual Dimorphism and Phenology

The winter moth (Operophtera brumata) belongs to one of the most species-rich families in Lepidoptera, the Geometridae (approximately 23,000 species). This family is of great economic importance as most species are herbivorous and capable of defoliating trees. Genome assembly of the winter moth allows the study of genes and gene families, such as the cytochrome P450 gene family, which is known to be vital in plant secondary metabolite detoxification and host-plant selection. It also enables exploration of the genomic basis for female brachyptery (wing reduction), a feature of sexual dimorphism in winter moth, and for seasonal timing, a trait extensively studied in this species. Here we present a reference genome for the winter moth, the first geometrid and largest sequenced Lepidopteran genome to date (638 Mb) including a set of 16,912 predicted protein-coding genes. This allowed us to assess the dynamics of evolution on a genome-wide scale using the P450 gene family. We also identified an expanded gene family potentially linked to female brachyptery, and annotated the genes involved in the circadian clock mechanism as main candidates for involvement in seasonal timing. The genome will contribute to Lepidopteran genomic resources and comparative genomics. In addition, the genome enhances our ability to understand the genetic and molecular basis of insect seasonal timing and thereby provides a reference for future evolutionary and population studies on the winter moth.

[1]  L. Vasseur,et al.  Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.) , 2015, Scientific Reports.

[2]  D. Denlinger,et al.  Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens , 2015, Journal of Experimental Biology.

[3]  L. Vasseur,et al.  Characterization and expression of the cytochrome P 450 gene family in diamondback moth , Plutella xylostella ( L . ) , 2015 .

[4]  K. Kraaijeveld Reversible Trait Loss: The Genetic Architecture of Female Ornaments , 2014 .

[5]  Liisa Holm,et al.  The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera , 2014, Nature Communications.

[6]  Shuxian Liu,et al.  The complete mitogenome of Apocheima cinerarius (Lepidoptera: Geometridae: Ennominae) and comparison with that of other lepidopteran insects. , 2014, Gene.

[7]  N. Wahlberg,et al.  Timing and Patterns in the Taxonomic Diversification of Lepidoptera (Butterflies and Moths) , 2013, PloS one.

[8]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[9]  Jianying Yuan,et al.  Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects , 2013, 1308.2012.

[10]  L. Bachmann,et al.  Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach , 2013, Nucleic acids research.

[11]  Petr Novák,et al.  RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads , 2013, Bioinform..

[12]  M. Visser,et al.  Evolutionary response of the egg hatching date of a herbivorous insect under climate change , 2013 .

[13]  M. Dalíková,et al.  Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism , 2012, Heredity.

[14]  Jian Wang,et al.  A heterozygous moth genome provides insights into herbivory and detoxification , 2013, Nature Genetics.

[15]  Erik Aronesty,et al.  Comparison of Sequencing Utility Programs , 2013 .

[16]  J. Fabrick,et al.  Sequencing and De Novo Assembly of the Western Tarnished Plant Bug (Lygus hesperus) Transcriptome , 2013, PloS one.

[17]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[18]  Shuai Zhan,et al.  MonarchBase: the monarch butterfly genome database , 2012, Nucleic Acids Res..

[19]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[20]  W. Pirovano,et al.  Toward almost closed genomes with GapFiller , 2012, Genome Biology.

[21]  Guangrui Huang,et al.  HaploMerger: Reconstructing allelic relationships for polymorphic diploid genome assemblies , 2012, Genome research.

[22]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[23]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[24]  Simon H. Martin,et al.  Butterfly genome reveals promiscuous exchange of mimicry adaptations among species , 2012, Nature.

[25]  Pablo Librado,et al.  BadiRate: estimating family turnover rates by likelihood-based methods , 2012, Bioinform..

[26]  M. Strand,et al.  Deep Sequencing Identifies Viral and Wasp Genes with Potential Roles in Replication of Microplitis demolitor Bracovirus , 2012, Journal of Virology.

[27]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[28]  Masatoshi Yamamoto,et al.  Association between Circadian Clock Genes and Diapause Incidence in Drosophila triauraria , 2011, PloS one.

[29]  Shuai Zhan,et al.  The Monarch Butterfly Genome Yields Insights into Long-Distance Migration , 2011, Cell.

[30]  Y. Sima,et al.  Timeless is a critical gene in the diapause of silkworm, Bombyx mori , 2011 .

[31]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[32]  M. Pegoraro,et al.  Animal clocks: a multitude of molecular mechanisms for circadian timekeeping , 2011, Wiley interdisciplinary reviews. RNA.

[33]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[34]  Alex Boyd,et al.  Hal: an Automated Pipeline for Phylogenetic Analyses of Genomic Data , 2011, PLoS currents.

[35]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[36]  R. Feyereisen Arthropod CYPomes illustrate the tempo and mode in P450 evolution. , 2011, Biochimica et biophysica acta.

[37]  M. Schuler P450s in plant-insect interactions. , 2011, Biochimica et biophysica acta.

[38]  K. Sahara,et al.  Sex chromosome evolution in moths and butterflies , 2011, Chromosome Research.

[39]  H. Abe,et al.  Molecular analysis of sex chromosome-linked mutants in the silkworm Bombyx mori , 2010, Journal of Genetics.

[40]  V. Valente,et al.  Sex-specific methylation in Drosophila: an investigation of the Sophophora subgenus , 2010, Genetica.

[41]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[42]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[43]  J. Elkinton,et al.  Survey for Winter Moth (Lepidoptera: Geometridae) in Northeastern North America with Pheromone-Baited Traps and Hybridization with the Native Bruce Spanworm (Lepidoptera: Geometridae) , 2010 .

[44]  Ravi Allada,et al.  Circadian organization of behavior and physiology in Drosophila. , 2010, Annual review of physiology.

[45]  G. K. Davis,et al.  Genome Sequence of the Pea Aphid Acyrthosiphon pisum , 2010, PLoS biology.

[46]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[47]  Erich Bornberg-Bauer,et al.  Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species , 2010, Science.

[48]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[49]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[50]  J. Nagaraju,et al.  The Silkworm Z Chromosome Is Enriched in Testis-Specific Genes , 2009, Genetics.

[51]  Kevin J. Emerson,et al.  Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. , 2009, Trends in genetics : TIG.

[52]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[53]  Cyrus Chothia,et al.  SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny , 2008, Nucleic Acids Res..

[54]  Nansheng Chen,et al.  Genblasta: Enabling Blast to Identify Homologous Gene Sequences , 2022 .

[55]  O. Gascuel,et al.  Estimating maximum likelihood phylogenies with PhyML. , 2009, Methods in molecular biology.

[56]  Zhao‐Jun Wei,et al.  The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae) , 2009, Molecular Biology Reports.

[57]  Kazuei Mita,et al.  The genome of a lepidopteran model insect, the silkworm Bombyx mori. , 2009, Insect biochemistry and molecular biology.

[58]  K. Mita,et al.  Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. , 2008, Insect biochemistry and molecular biology.

[59]  Sergey Koren,et al.  Aggressive assembly of pyrosequencing reads with mates , 2008, Bioinform..

[60]  J. Werren,et al.  Wolbachia: master manipulators of invertebrate biology , 2008, Nature Reviews Microbiology.

[61]  C. Kyriacou,et al.  Comparative analysis of circadian clock genes in insects , 2008, Insect molecular biology.

[62]  E. Õunap,et al.  Systematic position of Lythriini revised: transferred from Larentiinae to Sterrhinae (Lepidoptera, Geometridae) , 2008 .

[63]  Thomas Walker,et al.  Genome Evolution of Wolbachia Strain wPip from the Culex pipiens Group , 2008, Molecular biology and evolution.

[64]  C. Nusbaum,et al.  ALLPATHS: de novo assembly of whole-genome shotgun microreads. , 2008, Genome research.

[65]  V. Meyer-Rochow,et al.  Sexual dimorphism in the compound eye of the moth Operophtera brumata (Lepidoptera, Geometridae) , 2008 .

[66]  G. Roderick,et al.  You can't Keep a Good Parasite Down: Evolution of a Male-Killer Suppressor Uncovers Cytoplasmic Incompatibility , 2008, Evolution; international journal of organic evolution.

[67]  Peer Bork,et al.  The Genome of the Model Beetle and Pest Tribolium Castaneum Vertebrate-specific Orthologues Insect-specific Orthologues Homology Undetectable Similarity , 2022 .

[68]  W. Bradshaw,et al.  Evolution of Animal Photoperiodism , 2007 .

[69]  Marcel E. Visser,et al.  Predicting adaptation of phenology in response to climate change, an insect herbivore example , 2007 .

[70]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[71]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[72]  C. Kyriacou,et al.  Phenotypic effects induced by knock-down of the period clock gene in Bombyx mori. , 2007, Genetical research.

[73]  I. Edery,et al.  Thermosensitive splicing of a clock gene and seasonal adaptation. , 2007, Cold Spring Harbor symposia on quantitative biology.

[74]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[75]  R. Feyereisen,et al.  Evolution of insect P450. , 2006, Biochemical Society transactions.

[76]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[77]  C. Chien,et al.  A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. , 2006, Developmental cell.

[78]  D. Kent,et al.  Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus , 2006, Development.

[79]  The Honeybee Genome Sequencing Consortium,et al.  Erratum: Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[80]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[81]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints , 2005, Nucleic Acids Res..

[82]  Jonathan Pevsner,et al.  Basic Local Alignment Search Tool (BLAST) , 2005 .

[83]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[84]  Robert K. Jansen,et al.  Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..

[85]  T. Speed,et al.  GOstat: find statistically overrepresented Gene Ontologies within a group of genes. , 2004, Bioinformatics.

[86]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[87]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[88]  Yoshiaki Nagamura,et al.  The genome sequence of silkworm, Bombyx mori. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[89]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[90]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[91]  J. R. Ferrer‐Paris,et al.  A brachypterous butterfly? , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  P. Hebert,et al.  Genome size variation in lepidopteran insects , 2003 .

[93]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[94]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[95]  M. Itoh,et al.  Circadian Clock Controlling Egg Hatching in the Cricket (Gryllus bimaculatus) , 2000, Journal of biological rhythms.

[96]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[97]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[98]  R. Feyereisen Insect P450 enzymes. , 1999, Annual review of entomology.

[99]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[100]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[101]  A. Roca,et al.  Period Protein Is Necessary for Circadian Control of Egg Hatching Behavior in the Silkmoth Antheraea pernyi , 1996, Neuron.