Electron-Impact Liquid-Metal-Jet Hard x-Ray Sources

The power and brightness of electron-impact microfocus x-ray sources have long been limited by thermal damage in the target. This is a major constraint for a wide range of biomedical applications, from imaging to diffraction. Here, we describe the development of an x-ray microfocus source based on a new target concept, the liquid-metal jet (LMJ). The regenerative nature of this target allows for significantly higher e-beam power density than on conventional targets, resulting in this source showing promise for > 100 × higher brightness than state-of-the-art sources. We first discuss the basic physics of the two important subsystems of the source, LMJ in vacuum and focused electron-beam systems, and then describe the properties of several versions of the source, from early prototypes to the first LMJ sources now reaching the market. Finally, we review some early applications of the source for biomedical imaging and diffraction.

[1]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[2]  M. Berglund,et al.  Stabilization of liquified-inert-gas jets for laser-plasma generation , 2004 .

[3]  H. Hertz,et al.  Microscopic high-speed liquid-metal jets in vacuum , 2005 .

[4]  Hans M. Hertz,et al.  Cryogenic liquid-jet target for debris-free laser-plasma soft x-ray generation , 1998 .

[5]  R. Lewis,et al.  Medical phase contrast x-ray imaging: current status and future prospects. , 2004, Physics in medicine and biology.

[6]  S. Humphries,et al.  Principles of Charged Particle Acceleration , 1986 .

[7]  Hans M. Hertz,et al.  High-brightness water-window electron-impact liquid-jet microfocus source , 2010 .

[8]  M. J. McCarthy,et al.  Review of stability of liquid jets and the influence of nozzle design , 1974 .

[9]  Anna Burvall,et al.  Phase Retrieval in X-ray Phase-contrast Imaging Suitable for Tomography , 2022 .

[10]  Hans M. Hertz,et al.  Status of the liquid-metal-jet-anode electron-impact x-ray source , 2004, SPIE Optics + Photonics.

[11]  Hans M. Hertz,et al.  Phase-contrast x-ray imaging with a liquid-metal-jet-anode microfocus source , 2007 .

[12]  Hans M. Hertz,et al.  A microfocus x-ray source based on a nonmetal liquid-jet anode , 2008 .

[13]  R. Phinney The breakup of a turbulent liquid jet in a gaseous atmosphere , 1973, Journal of Fluid Mechanics.

[14]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics , 2001 .

[15]  Bjoern A. M. Hansson,et al.  A liquid-xenon-jet laser-plasma x-ray and EUV source , 2000 .

[16]  Hans M. Hertz,et al.  Droplet target for low-debris laser-plasma soft X-ray generation , 1993 .

[17]  M. Sedláček Electron Physics of Vacuum and Gaseous Devices , 1996 .

[18]  Axel Thran,et al.  Liquid metal anode X-ray tubes and their potential for high continuous power operation , 2003 .

[19]  H M Hertz,et al.  A 9 keV electron-impact liquid-gallium-jet x-ray source. , 2008, The Review of scientific instruments.

[20]  H. Hertz,et al.  Liquid-metal-jet anode x-ray tube , 2004 .

[21]  R. Smoluchowski,et al.  Elements of X‐Ray Diffraction , 1957 .

[22]  E Castelli,et al.  Mammography with synchrotron radiation: phase-detection techniques. , 2000, Radiology.

[23]  H M Hertz,et al.  X-ray phase contrast for CO2 microangiography , 2012, Physics in medicine and biology.

[24]  C. Brennen Cavitation and Bubble Dynamics , 1995 .

[25]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[26]  Hans M. Hertz,et al.  Liquid-metal-jet anode electron-impact x-ray source , 2003 .

[27]  S. Middleman,et al.  Newtonian jet stability , 1966 .

[28]  R. Blevins Applied Fluid Dynamics Handbook , 1984 .

[29]  J. Freudenberger,et al.  Perspectives of medical X-ray imaging , 2001 .

[30]  Hans M. Hertz,et al.  Debris-free soft x-ray generation using a liquid droplet laser-plasma target , 1995, Optics & Photonics.

[31]  H M Hertz,et al.  A 24 keV liquid-metal-jet x-ray source for biomedical applications. , 2011, The Review of scientific instruments.

[32]  Axel Thran,et al.  Liquid-metal anode x-ray tube , 2004, SPIE Optics + Photonics.

[33]  Hans M. Hertz,et al.  Liquid-tin-jet laser-plasma extreme ultraviolet generation , 2004 .

[34]  R. Phinney Stability of a laminar viscous jet– the influence of the initial disturbance level , 1972 .

[35]  H. Legge,et al.  Flow of a water jet into vacuum , 1978 .

[36]  Richard J. Fitzgerald,et al.  Phase‐Sensitive X‐Ray Imaging , 2000 .

[37]  D E Grider,et al.  Electron beam melting in microfocus X-ray tubes , 1986 .