Genes and the physics of the DNA double-helix.

[1]  Homer Jacobson,et al.  Intramolecular Reaction in Polycondensations. I. The Theory of Linear Systems , 1950 .

[2]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[3]  Douglas Poland,et al.  Theory of helix-coil transitions in biopolymers , 1970 .

[4]  Y. Lyubchenko,et al.  Fine structure of DNA melting curves , 1976, Biopolymers.

[5]  M. Fixman,et al.  Theory of DNA melting curves , 1977, Biopolymers.

[6]  Y. Lyubchenko,et al.  Direct comparison of theoretical and experimental melting profiles for RFII ΦX174 DNA , 1978, Nature.

[7]  S. Stirdivant,et al.  DNA structure and gene regulation. , 1980, Progress in nucleic acid research and molecular biology.

[8]  C. Cantor,et al.  Biophysical chemistry. Part III, The behavior of biologicalmacromolecules , 1980 .

[9]  O. Gotoh,et al.  Locations of frequently opening regions on natural DNAs and their relation to functional loci , 1981, Biopolymers.

[10]  Yusaku Tagashira,et al.  Stabilities of nearest‐neighbor doublets in double‐helical DNA determined by fitting calculated melting profiles to observed profiles , 1981 .

[11]  O. Gotoh,et al.  Prediction of melting profiles and local helix stability for sequenced DNA. , 1983, Advances in biophysics.

[12]  A Suyama,et al.  Correlation between thermal stability maps and genetic maps of double-stranded DNAs. , 1983, Journal of theoretical biology.

[13]  Albert S. Benight,et al.  Thermal denaturation of DNA molecules: A comparison of theory with experiment , 1985 .

[14]  P. Claverie,et al.  Analysis of multiexponential functions without a hypothesis as to the number of components , 1987, Nature.

[15]  T H Jukes,et al.  Role of directional mutation pressure in the evolution of the eubacterial genetic code. , 1987, Cold Spring Harbor Symposia on Quantitative Biology.

[16]  D. Lilley,et al.  Long‐range structural effects in supercolied DNA: Statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion , 1989, Biopolymers.

[17]  Henri Buc,et al.  An optimal formulation of the matrix method in statistical mechanics of one‐dimensional interacting units: Efficient iterative algorithmic procedures , 1990 .

[18]  J. Gillespie The causes of molecular evolution , 1991 .

[19]  P. Slonimski,et al.  Two yeast chromosomes are related by a fossil duplication of their centromeric regions. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[20]  G J King Stability, structure and complexity of yeast chromosome III. , 1993, Nucleic acids research.

[21]  G. Steger,et al.  Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. , 1994, Nucleic acids research.

[22]  B F Lang,et al.  Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. , 1994, Journal of molecular biology.

[23]  E. Yeramian,et al.  Complexity and Tractability. Statistical Mechanics of Helix-Coil Transitions in Circular DNA as a Model-Problem , 1994 .

[24]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[25]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[26]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[27]  E. Coissac,et al.  A comparative study of duplications in bacteria and eukaryotes: the importance of telomeres. , 1997, Molecular biology and evolution.

[28]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[29]  E. Yeramian,et al.  The physics of DNA and the annotation of the Plasmodium falciparum genome. , 2000, Gene.

[30]  I. Tinoco Physical chemistry of nucleic acids. , 2002, Annual review of physical chemistry.