Universal Crosstalk of Twisted Light in Random Media.

Structured light offers wider bandwidths and higher security for communication. However, propagation through complex random media, such as the Earth's atmosphere, typically induces intermodal crosstalk. We show numerically and experimentally that coupling of photonic orbital angular momentum modes is governed by a universal function of a single parameter: the ratio between the random medium's and the beam's transverse correlation lengths, even in the regime of pronounced intensity fluctuations.

[1]  R. Carminati,et al.  Principles of Scattering and Transport of Light , 2021 .

[2]  A. Forbes,et al.  The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields , 2021, 2105.12412.

[3]  Mark R. Dennis,et al.  Structured light , 2021, Nature Photonics.

[4]  A. Forbes,et al.  Structured Light in Turbulence , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  A. Willner,et al.  High-fidelity spatial mode transmission through a 1-km-long multimode fiber via vectorial time reversal , 2020, Nature Communications.

[6]  A. Buchleitner,et al.  Universal entanglement loss induced by angular uncertainty , 2019, Journal of Optics.

[7]  A. Buchleitner,et al.  Entanglement protection of high-dimensional states by adaptive optics , 2018, New Journal of Physics.

[8]  Mojtaba Mansour Abadi,et al.  Tackling Africa’s digital divide , 2018, Nature Photonics.

[9]  Gerd Leuchs,et al.  Free-space propagation of high-dimensional structured optical fields in an urban environment , 2017, Science Advances.

[10]  Joseph M. Kahn,et al.  Capacity limits for free-space channels , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[11]  A. Forbes,et al.  Characterizing quantum channels with non-separable states of classical light , 2017, Nature Physics.

[12]  Mourad Zghal,et al.  Optical communication beyond orbital angular momentum , 2016, Scientific Reports.

[13]  A. Zeilinger,et al.  Twisted light transmission over 143 km , 2016, Proceedings of the National Academy of Sciences.

[14]  Andrei Faraon,et al.  Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications , 2016, Scientific Reports.

[15]  A. Buchleitner,et al.  Universal entanglement decay of photonic orbital angular momentum qubit states in atmospheric turbulence: an analytical treatment , 2015, Journal of Physics A: Mathematical and Theoretical.

[16]  Monish Ranjan Chatterjee,et al.  Split-step approach to electromagnetic propagation through atmospheric turbulence using the modified von Karman spectrum and planar apertures , 2014 .

[17]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[18]  M. Padgett,et al.  Self-healing of quantum entanglement after an obstruction , 2014, Nature Communications.

[19]  M. Segev,et al.  Anderson localization of light , 2013, Nature Photonics.

[20]  R. Boyd,et al.  Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication , 2013, 1301.7454.

[21]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[22]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[23]  J. P. Woerdman,et al.  High-dimensional entanglement with orbital-angular-momentum states of light , 2011 .

[24]  Jason D. Schmidt,et al.  Numerical Simulation of Optical Wave Propagation With Examples in MATLAB , 2010 .

[25]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[26]  M. Born,et al.  Principles of optics : electromagnetic theory of propagation, interference and diffraction of light , 1999 .

[27]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[28]  F. Gori,et al.  Bessel-Gauss beams , 1987 .

[29]  J. Goodman Introduction to Fourier optics , 1969 .

[30]  Philipp Nadel Mesoscopic Physics Of Electrons And Photons , 2016 .

[31]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[32]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .