Extrapolation-based super-convergent implicit-explicit Peer methods with A-stable implicit part

Abstract In this paper, we extend the implicit-explicit (IMEX) methods of Peer type recently developed by Lang and Hundsdorfer (2017) [16] to a broader class of two-step methods that allow the construction of super-convergent IMEX-Peer methods with A-stable implicit part. IMEX schemes combine the necessary stability of implicit and low computational costs of explicit methods to efficiently solve systems of ordinary differential equations with both stiff and non-stiff parts included in the source term. To construct super-convergent IMEX-Peer methods with favourable stability properties, we derive necessary and sufficient conditions on the coefficient matrices and apply an extrapolation approach based on already computed stage values. Optimised super-convergent IMEX-Peer methods of order s + 1 for s = 2 , 3 , 4 stages are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other IMEX-Peer methods are included.

[1]  Helmut Podhaisky,et al.  Numerik gewöhnlicher Differentialgleichungen , 2012 .

[2]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[3]  John C. Butcher General linear methods , 2006, Acta Numerica.

[4]  Rüdiger Weiner,et al.  Efficient A-stable peer two-step methods , 2017, J. Comput. Appl. Math..

[5]  Dale R. Durran,et al.  Implicit–Explicit Multistep Methods for Fast-Wave–Slow-Wave Problems , 2012 .

[6]  Rüdiger Weiner,et al.  Superconvergent IMEX peer methods , 2018, Applied Numerical Mathematics.

[7]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[8]  Helmut Podhaisky,et al.  Superconvergent explicit two-step peer methods , 2009 .

[9]  Rüdiger Weiner,et al.  Parallel Two-Step W-Methods with Peer Variables , 2004, SIAM J. Numer. Anal..

[10]  Willem Hundsdorfer,et al.  IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..

[11]  Helmut Podhaisky,et al.  Implicit peer methods for large stiff ODE systems , 2012 .

[12]  Rüdiger Weiner,et al.  IMEX peer methods for fast-wave–slow-wave problems , 2017 .

[13]  Helmut Podhaisky,et al.  High-order linearly implicit two-step peer -- finite element methods for time-dependent PDEs , 2009 .

[14]  W. Hundsdorfer On the error of general linear methods for stiff dissipative differential equations , 1994 .

[15]  Sebastiano Boscarino,et al.  On an accurate third order implicit-explicit Runge--Kutta method for stiff problems , 2009 .

[16]  Robert D. Skeel Analysis of Fixed-Stepsize Methods , 1976 .

[17]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[18]  Rüdiger Weiner,et al.  Implicit parallel peer methods for stiff initial value problems , 2005 .

[19]  Michel Crouzeix,et al.  Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques , 1980 .

[20]  Willem Hundsdorfer,et al.  Extrapolation-based implicit-explicit Peer methods with optimised stability regions , 2016, J. Comput. Phys..

[21]  Rüdiger Weiner,et al.  A class of implicit peer methods for stiff systems , 2017, J. Comput. Appl. Math..

[22]  John C. Butcher,et al.  General linear methods for ordinary differential equations , 2009, Math. Comput. Simul..

[23]  A. Cardone,et al.  Extrapolation-based implicit-explicit general linear methods , 2013, Numerical Algorithms.

[24]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[25]  Jens Lang,et al.  Adaptive Two-Step Peer Methods for Incompressible Navier–Stokes Equations , 2010 .