A Method for Visualizing Multivariate Time Series Data

Visualization and exploratory analysis is an important part of any data analysis and is made more challenging when the data are voluminous and high-dimensional. One such example is environmental monitoring data, which are often collected over time and at multiple locations, resulting in a geographically indexed multivariate time series. Financial data, although not necessarily containing a geographic component, present another source of high-volume multivariate time series data. We present the mvtsplot function which provides a method for visualizing multivariate time series data. We outline the basic design concepts and provide some examples of its usage by applying it to a database of ambient air pollution measurements in the United States and to a hypothetical portfolio of stocks.