AstroBlend: An astrophysical visualization package for Blender

The rapid growth in scale and complexity of both computational and observational astrophysics over the past decade necessitates efficient and intuitive methods for examining and visualizing large datasets. Here, I present {\it AstroBlend}, an open-source Python library for use within the three dimensional modeling software, {\it Blender}. While {\it Blender} has been a popular open-source software among animators and visual effects artists, in recent years it has also become a tool for visualizing astrophysical datasets. {\it AstroBlend} combines the three dimensional capabilities of {\it Blender} with the analysis tools of the widely used astrophysical toolset, {\it yt}, to afford both computational and observational astrophysicists the ability to simultaneously analyze their data and create informative and appealing visualizations. The introduction of this package includes a description of features, work flow, and various example visualizations. A website - www.astroblend.com - has been developed which includes tutorials, and a gallery of example images and movies, along with links to downloadable data, three dimensional artistic models, and various other resources.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Ralph S. Sutherland,et al.  GALAXY EMISSION LINE CLASSIFICATION USING THREE-DIMENSIONAL LINE RATIO DIAGRAMS , 2014, 1406.5186.

[3]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[4]  A. Mehner,et al.  The Three-dimensional Structure of the Eta Carinae Homunculus , 2014, 1407.4096.

[5]  Gunther H. Weber,et al.  Recent Advances in VisIt: AMR Streamlines and Query-Driven Visualization , 2010 .

[6]  Tucson,et al.  The AGORA High-resolution Galaxy Simulations Comparison Project. III. Cosmological Zoom-in Simulation of a Milky Way–mass Halo , 2013, The Astrophysical Journal.

[7]  J. Wadsley,et al.  A Superbubble Feedback Model for Galaxy Simulations , 2014, 1405.2625.

[8]  Brian R. Kent,et al.  3D Scientific Visualization with Blender , 2015 .

[9]  R. Smith,et al.  The Arecibo Galaxy Environment Survey – V. The Virgo cluster (I) , 2012, 1209.4338.

[10]  Alyssa A. Goodman,et al.  Principles of high‐dimensional data visualization in astronomy , 2012, 1205.4747.

[11]  Frédéric P. A. Vogt,et al.  Augmented Reality in astrophysics , 2013, ArXiv.

[12]  Matthew J. Turk,et al.  Scaling a code in the human dimension , 2013, XSEDE.

[13]  J.B.T.M. Roerdink,et al.  The role of 3-D interactive visualization in blind surveys of H i in galaxies , 2015, Astron. Comput..

[14]  Christopher J. Fluke,et al.  Incorporating interactive three-dimensional graphics in astronomy research papers , 2007, 0709.2734.

[15]  Rhys Taylor FRELLED : A Realtime Volumetric Data Viewer For Astronomers , 2015 .

[16]  Brian R. Kent,et al.  Visualizing Astronomical Data with Blender , 2013, ArXiv.

[17]  V. Belokurov,et al.  Rotation of halo populations in the Milky Way and M31 , 2010, 1008.3067.

[18]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[19]  G. Bryan,et al.  Introducing Enzo, an AMR Cosmology Application , 2004, astro-ph/0403044.

[20]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[21]  Claudia Caudai,et al.  BioBlender: Fast and Efficient All Atom Morphing of Proteins Using Blender Game Engine , 2010, 1009.4801.

[22]  Matthew G. Knepley,et al.  Run-Time Extensibility and Librarization of Simulation Software , 2014, Computing in Science & Engineering.

[23]  Miguel A. Aragon-Calvo,et al.  Geometry of the Cosmic Web: Minkowski Functionals from the Delaunay Tessellation , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[24]  E. Quataert,et al.  Galaxy-scale outflows driven by active galactic nuclei , 2011, 1107.5579.

[25]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[26]  Matthew T. Whiting,et al.  duchamp: a 3D source finder for spectral‐line data , 2012, 1201.2710.

[27]  Wolfgang Steffen,et al.  3D Printing Meets Astrophysics: A New Way to Visualize and Communicate Science , 2015 .

[28]  E. Ramirez-Ruiz,et al.  THE ROLE OF NUCLEAR STAR CLUSTERS IN ENHANCING SUPERMASSIVE BLACK HOLE FEEDING RATES DURING GALAXY MERGERS , 2014, 1410.7381.

[29]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[30]  E. Quataert,et al.  The growth of massive black holes in galaxy merger simulations with feedback by radiation pressure , 2010, 1006.3312.

[31]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[32]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .