Array imaging using intensity-only measurements

We introduce a new approach for narrow band array imaging of localized scatterers from intensity-only measurements by considering the possibility of reconstructing the positions and reflectivities of the scatterers exactly from only partial knowledge of the array data, since we assume that phase information is not available. We reformulate this intensity-only imaging problem as a non-convex optimization problem and show that we can have exact recovery by minimizing the rank of a positive semidefinite matrix associated with the unknown reflectivities. Since this optimization problem is NP-hard and is computationally intractable, we replace the rank of the matrix by its nuclear norm, the sum of its singular values, which is a convex programming problem that can be solved in polynomial time. Numerical experiments explore the robustness of this approach, which recovers sparse reflectivity vectors exactly as solutions of a convex optimization problem.

[1]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[2]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[3]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[4]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[5]  Anthony J. Devaney,et al.  Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography , 1993 .

[6]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[7]  S. Arridge Optical tomography in medical imaging , 1999 .

[8]  Dario Fasino,et al.  An inverse Robin problem for Laplace's equation: theoretical results and numerical methods , 1999 .

[9]  Imaging and time reversal in random media , 2001 .

[10]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[11]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[12]  Greg Gbur,et al.  Diffraction tomography without phase information. , 2002, Optics letters.

[13]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[14]  G. Papanicolaou,et al.  Theory and applications of time reversal and interferometric imaging , 2003 .

[15]  M. Mesbahi,et al.  On the rank minimization problem , 2004, Proceedings of the 2004 American Control Conference.

[16]  A. Devaney,et al.  Time-reversal imaging with multiple signal classification considering multiple scattering between the targets , 2004 .

[17]  G. Papanicolaou,et al.  Interferometric array imaging in clutter , 2005 .

[18]  Thomas Taubner,et al.  Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. , 2005, Optics express.

[19]  Anthony J. Devaney,et al.  Time-reversal-based imaging and inverse scattering of multiply scattering point targets , 2005 .

[20]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[21]  Jingjuan Zhang,et al.  Phase-retrieval algorithms applied in a 4-f system for optical image encryption: a comparison , 2005, SPIE/COS Photonics Asia.

[22]  L. Novotný,et al.  Subsurface Raman imaging with nanoscale resolution. , 2006, Nano letters.

[23]  D. Deamer,et al.  Single-molecule detection sensitivity using planar integrated optics on a chip. , 2006, Optics letters.

[24]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[25]  Hanoch Lev-Ari,et al.  Intensity-only signal-subspace-based imaging. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[27]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[28]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[29]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[30]  John C Schotland,et al.  Phaseless three-dimensional optical nanoimaging. , 2009, Physical review letters.

[31]  Ali Cafer Gürbüz,et al.  A Compressive Sensing Data Acquisition and Imaging Method for Stepped Frequency GPRs , 2009, IEEE Transactions on Signal Processing.

[32]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[33]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[34]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[35]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[36]  H. Craighead,et al.  Zero-mode waveguides for single-molecule analysis. , 2012, Annual review of biophysics.

[37]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[38]  Miguel Moscoso,et al.  Robust imaging of localized scatterers using the singular value decomposition and ℓ1 minimization , 2013 .