Eruption of the Eyjafjallajökull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere

A fraction of the volcanic plume that originated from the Eyjafjallajökull volcanic eruption on Iceland in 2010 reached the southern Iberian Peninsula in May 2010. The plume was monitored and characterized in terms of optical and microphysical properties with a combination of Raman lidar and star‐ and Sun‐photometers. Our observations showed that the plume arriving at the Iberian Peninsula was mainly composed of sulphate and sulphuric‐acid particles. To our knowledge, this is the first study of optical properties and inverted microphysical properties of volcanic sulphate particles in the lower troposphere/boundary layer based on multiwavelength Raman lidar measurements. A remarkable increase in the particle number concentration in the accumulation mode was determined from the inversion of the aerosol optical properties. The large Ångström exponents and low linear particle depolarization ratios (4–7%) indicated the presence of small and spherical particles. The particle effective radii ranged between 0.30 and 0.55 µm. In situ instrumentation confirmed an increase of sulphate particles at ground level during this period.

[1]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[2]  R. A. Elliot,et al.  Optical remote sensing of the atmosphere. , 1985, Applied optics.

[3]  Laser remote sensing of the atmosphere , 1986 .

[4]  M. T. Osborn,et al.  Airborne lidar observations of the Pinatubo volcanic plume , 1992 .

[5]  H. Jäger,et al.  The Pinatubo eruption cloud observed by lidar at Garmisch‐Partenkirchen , 1992 .

[6]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[7]  D. Winker,et al.  Evolution of the Pinatubo Volcanic Cloud Over Hampton, Virginia , 1995, Optical Remote Sensing of the Atmosphere.

[8]  J. Volckens,et al.  Counting and particle transmission efficiency of the aerodynamic particle sizer , 2005 .

[9]  J. Pelon,et al.  Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post‐volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo , 1995 .

[10]  A. Ansmann,et al.  Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar. , 1995, Applied optics.

[11]  P. Di Girolamo,et al.  Lidar observations of the stratospheric aerosol layer over southern Italy in the period 1991–1995 , 1996 .

[12]  J. Feichter,et al.  Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution , 1997 .

[13]  J. Ogren,et al.  Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer , 1998 .

[14]  A. Stohl,et al.  Validation of the lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data , 1998 .

[15]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[16]  A. Adriani,et al.  Comparison of various linear depolarization parameters measured by lidar. , 1999, Applied optics.

[17]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation. , 1999, Applied optics.

[18]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[19]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[20]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[21]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[22]  A. Robock Volcanic eruptions and climate , 2000 .

[23]  D. Althausen,et al.  Comprehensive particle characterization from three-wavelength Raman-lidar observations: case study. , 2001, Applied optics.

[24]  M. Wendisch,et al.  Optical and microphysical characterization of biomass‐ burning and industrial‐pollution aerosols from‐ multiwavelength lidar and aircraft measurements , 2002 .

[25]  U. Wandinger,et al.  Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. , 2002, Applied optics.

[26]  A. Ansmann,et al.  Experimental determination of the lidar overlap profile with Raman lidar. , 2002, Applied optics.

[27]  V. Freudenthaler,et al.  Long-range transport of Saharan dust to northern Europe : The 11-16 October 2001 outbreak observed with EARLINET , 2003 .

[28]  L. Alados-Arboledas,et al.  Aerosol size properties at Armilla, Granada (Spain) , 2003 .

[29]  D. Müller,et al.  Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. , 2004, Applied optics.

[30]  Andreas Petzold,et al.  Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon , 2004 .

[31]  A. Stohl,et al.  Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 , 2005 .

[32]  C. Weitkamp Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[33]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[34]  Lucas Alados-Arboledas,et al.  Correction factors for a total scatter/backscatter nephelometer , 2008 .

[35]  L. Alados-Arboledas,et al.  Development and calibration of a star photometer to measure the aerosol optical depth: Smoke observations at a high mountain site , 2008 .

[36]  L. Alados-Arboledas,et al.  Multi-spectral Lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain , 2008 .

[37]  G. Biskos,et al.  Hygroscopic growth of nucleation-mode acidic sulfate particles , 2009 .

[38]  F. Olmo,et al.  Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite , 2009 .

[39]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[40]  Ramesh P. Singh,et al.  Optical Properties of Fine/Coarse Mode Aerosol Mixtures , 2010 .

[41]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[42]  L. Alados-Arboledas,et al.  Physical and optical properties of aerosols over an urban location in Spain: seasonal and diurnal variability , 2009 .

[43]  S. Carn,et al.  Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation , 2009 .

[44]  V. Freudenthaler,et al.  The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany , 2010 .

[45]  U. Schumann,et al.  Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010 , 2010 .

[46]  W. Steinbrecht,et al.  The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles , 2010 .

[47]  A. Ansmann,et al.  Volcanic aerosol layers observed with multiwavelength Raman lidar over central Europe in 2008–2009 , 2010 .

[48]  Josef Gasteiger,et al.  Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements , 2010 .

[49]  Albert Ansmann,et al.  Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010 , 2011 .

[50]  Patrick Chazette,et al.  Aerosol content survey by mini N2-Raman lidar: Application to local and long-range transport aerosols , 2011 .

[51]  L. Mona,et al.  Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy , 2011 .

[52]  Stefan Emeis,et al.  Measurement and simulation of the 16/17 April 2010 Eyjafjallajökull volcanic ash layer dispersion in the northern Alpine region , 2011 .

[53]  L. Alados-Arboledas,et al.  Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star‐and sun‐photometry , 2011 .

[54]  Albert Ansmann,et al.  Ice formation in ash‐influenced clouds after the eruption of the Eyjafjallajökull volcano in April 2010 , 2011 .

[55]  L. Alados-Arboledas,et al.  Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations , 2011 .

[56]  Improvements in star photometry for aerosol characterizations , 2011 .

[57]  R. Hogan,et al.  Determining the contribution of volcanic ash and boundary layer aerosol in backscatter lidar returns: A three‐component atmosphere approach , 2011 .

[58]  T. Hassenkam,et al.  Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment , 2011, Proceedings of the National Academy of Sciences.

[59]  V. Freudenthaler,et al.  Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany , 2012 .

[60]  A. Stohl,et al.  Aerosol properties of the Eyjafjallajökull ash derived from sun photometer and satellite observations over the Iberian Peninsula , 2012 .

[61]  M. Pujadas,et al.  Characterization of the Eyjafjallajökull volcanic plume over the Iberian Peninsula by lidar remote sensing and ground-level data collection , 2012 .

[62]  A. Stohl,et al.  Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010 , 2012 .

[63]  S. Varghese,et al.  The Eyjafjallajökull ash plume – Part I: Physical, chemical and optical characteristics , 2012 .

[64]  L. Alados-Arboledas,et al.  Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies , 2012 .

[65]  Philippe Labazuy,et al.  Eyjafjallajökull ash concentrations derived from both lidar and modeling , 2012 .

[66]  Michael A. P. McAuliffe,et al.  Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET , 2012 .

[67]  L. Alados-Arboledas,et al.  Analysis of lidar depolarization calibration procedure and application to the atmospheric aerosol characterization , 2013 .

[68]  Alfredo Prata,et al.  Volcanic Ash Hazards to Aviation , 2015 .