Cylindrical element: Isogeometric model of continuum rod

A geometric mapping between a canonical cylindrical domain and a physical rod-like body is established and is utilized to analyze rod-like structures undergoing large deformations. A rod is described as a full three-dimensional continuum, yet parameterized only by surface control points. This description preserves the geometric smoothness, and allows for the consideration of lateral deformation in analysis. Numerical examples are presented to demonstrate the method.

[1]  W. Herzog Skeletal muscle mechanics: from mechanisms to function , 2001 .

[2]  O. O’Reilly On constitutive relations for elastic rods , 1998 .

[3]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[4]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[5]  Scott L. Delp,et al.  A Computational Framework for Simulation and Analysis of Human and Animal Movement , 2000 .

[6]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[7]  Jia Lu,et al.  NURBS-based Galerkin method and application to skeletal muscle modeling , 2005, SPM '05.

[8]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  M R Drost,et al.  Finite element modelling of contracting skeletal muscle. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  M. B. Rubin,et al.  On the significance of normal cross-sectional extension in beam theory with application to contact problems , 1989 .

[12]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[13]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[14]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[15]  M. B. Rubin,et al.  Numerical solution procedures for nonlinear elastic rods using the theory of a Cosserat point , 2001 .

[16]  F. E. Zajac,et al.  A Dimensionless musculotendon model , 1985 .

[17]  F. John Partial differential equations , 1967 .

[18]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[19]  Christophe Schlick,et al.  Accurate parametrization of conics by NURBS , 1996, IEEE Computer Graphics and Applications.

[20]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[21]  M. Rubin,et al.  A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point , 2003 .

[22]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[23]  P. M. Naghdi,et al.  Constrained theories of rods , 1984 .

[24]  Jia Lu,et al.  Biomechanical analysis of skeletal muscle in an interactive digital human system , 2005 .

[25]  Stuart S. Antman,et al.  The Theory of Rods , 1973 .

[26]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[27]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[28]  Brian Wyvill,et al.  Realistic skeletal muscle deformation using finite element analysis , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[29]  Jia Lu,et al.  Circular element: Isogeometric elements of smooth boundary , 2009 .

[30]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[31]  Dinesh Manocha,et al.  Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, Beijing, China, June 4-6, 2007 , 2007, Symposium on Solid and Physical Modeling.

[32]  P. M. Naghdi,et al.  On the theory of rods II. Developments by direct approach , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  P. M. Naghdi,et al.  On the theory of rods. I. Derivations from the three-dimensional equations , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  Jia Lu,et al.  Isogeometric contact analysis: Geometric basis and formulation for frictionless contact , 2011 .