Location Dependent Dirichlet Processes

Dirichlet processes (DP) are widely applied in Bayesian nonparametric modeling. However, in their basic form they do not directly integrate dependency information among data arising from space and time. In this paper, we propose location dependent Dirichlet processes (LDDP) which incorporate nonparametric Gaussian processes in the DP modeling framework to model such dependencies. We develop the LDDP in the context of mixture modeling, and develop a mean field variational inference algorithm for this mixture model. The effectiveness of the proposed modeling framework is shown on an image segmentation task.

[1]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[2]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[3]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[5]  S. MacEachern Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .

[6]  H. Ishwaran,et al.  DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES , 2002 .

[7]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[8]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[9]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.

[10]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[12]  Jason A. Duan,et al.  Generalized spatial dirichlet process models , 2007 .

[13]  D. Dunson,et al.  Kernel stick-breaking processes. , 2008, Biometrika.

[14]  Michael I. Jordan,et al.  Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes , 2008, NIPS.

[15]  David B. Dunson,et al.  Hierarchical kernel stick-breaking process for multi-task image analysis , 2008, ICML '08.

[16]  Sven Behnke,et al.  Large-scale object recognition with CUDA-accelerated hierarchical neural networks , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[17]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[18]  Peter I. Frazier,et al.  Distance dependent Chinese restaurant processes , 2009, ICML.

[19]  Yee Whye Teh,et al.  Bayesian Nonparametric Models , 2010, Encyclopedia of Machine Learning.

[20]  Yee Whye Teh,et al.  Dirichlet Process , 2017, Encyclopedia of Machine Learning and Data Mining.

[21]  J. Griffin The Ornstein–Uhlenbeck Dirichlet process and other time-varying processes for Bayesian nonparametric inference , 2011 .

[22]  David B. Dunson,et al.  The Kernel Beta Process , 2011, NIPS.

[23]  Chong Wang,et al.  The Discrete Infinite Logistic Normal Distribution for Mixed-Membership Modeling , 2011, AISTATS.

[24]  David B Dunson,et al.  Nonparametric Bayesian models through probit stick-breaking processes. , 2011, Bayesian analysis.

[25]  Soumya Ghosh,et al.  Spatial distance dependent Chinese restaurant processes for image segmentation , 2011, NIPS.

[26]  Ameet Talwalkar,et al.  Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..

[27]  Nicholas J. Foti,et al.  Slice sampling normalized kernel-weighted completely random measure mixture models , 2012, NIPS.

[28]  A. Gelfand,et al.  Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process , 2012 .

[29]  Daniel N. Rockmore,et al.  A unifying representation for a class of dependent random measures , 2012, AISTATS.

[30]  David M. Blei,et al.  Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models , 2014 .

[31]  Anuj Srivastava,et al.  Action Recognition Using Rate-Invariant Analysis of Skeletal Shape Trajectories , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Edmund Y. Lam,et al.  Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model , 2016, IEEE Transactions on Intelligent Transportation Systems.

[33]  Fengyuan Zhu,et al.  Blind Image Denoising via Dependent Dirichlet Process Tree. , 2017, IEEE transactions on pattern analysis and machine intelligence.