Sublethal toxic effects in a simple aquatic food chain

[1]  George A K van Voorn,et al.  Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. , 2007, Mathematical biosciences.

[2]  K. Lindenschmidt,et al.  Structural uncertainty in a river water quality modelling system , 2007 .

[3]  Yuri A. Kuznetsov,et al.  Multiparametric Bifurcation Analysis of a Basic Two-Stage Population Model , 2006, SIAM J. Appl. Math..

[4]  Karl-Erich Lindenschmidt,et al.  The effect of complexity on parameter sensitivity and model uncertainty in river water quality modelling , 2006 .

[5]  Joop L. M. Hermens,et al.  Environmental quality criteria for organic chemicals predicted from internal effect concentrations and a food web model , 2004, Environmental toxicology and chemistry.

[6]  Theo P Traas,et al.  A freshwater food web model for the combined effects of nutrients and insecticide stress and subsequent recovery , 2004, Environmental toxicology and chemistry.

[7]  M. C. Barber A review and comparison of models for predicting dynamic chemical bioconcentration in fish , 2003, Environmental toxicology and chemistry.

[8]  Timothy J. Sluckin,et al.  Consequences for predators of rescue and Allee effects on prey , 2003 .

[9]  A A Koelmans,et al.  Integrated modelling of eutrophication and organic contaminant fate & effects in aquatic ecosystems. A review. , 2001, Water research.

[10]  Sebastiaan A.L.M. Kooijman,et al.  Dynamic Energy and Mass Budgets in Biological Systems , 2000 .

[11]  B W Kooi,et al.  Consequences of population models for the dynamics of food chains. , 1998, Mathematical biosciences.

[12]  Bernd Krauskopf,et al.  Nonlinear Dynamics of Interacting Populations , 1998 .

[13]  Valery E. Forbes,et al.  Risk assessment on the basis of simplified life‐history scenarios , 1997 .

[14]  D. Mackay,et al.  Fugacity-Based Model of PCB Bioaccumulation in Complex Aquatic Food Webs , 1997 .

[15]  Frank A. P. C. Gobas,et al.  A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: application to Lake Ontario , 1993 .

[16]  Graciela Ana Canziani,et al.  Sublethal narcosis and population persistence: A modeling study on growth effects , 1993 .

[17]  D. DeAngelis,et al.  Dynamics of Nutrient Cycling and Food Webs , 1992, Population and Community Biology Series.

[18]  Frank A. P. C. Gobas,et al.  Model of Organic Chemical Uptake and Clearance by Fish from Food and Water , 1990 .

[19]  Thomas G. Hallam,et al.  Toxicant-induced mortality in models of Daphnia populations , 1990 .

[20]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[21]  Robert V. Thomann,et al.  Bioaccumulation model of organic chemical distribution in aquatic food chains , 1989 .

[22]  Ray R. Lassiter,et al.  Modeling bioconcentration of nonpolar organic pollutants by fish , 1988 .

[23]  J. Connolly,et al.  Model of PCB in the Lake Michigan lake trout food chain. , 1984, Environmental science & technology.

[24]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[26]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  W. C. Allee Animal Aggregations: A Study in General Sociology , 1931 .

[28]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[29]  B W Kooi,et al.  Numerical Bifurcation Analysis of Ecosystems in a Spatially Homogeneous Environment , 2003, Acta biotheoretica.

[30]  Sebastiaan A.L.M. Kooijman,et al.  The Analysis of Aquatic Toxicity Data , 1996 .

[31]  R. Thomann,et al.  Principles of surface water quality modeling and control , 1987 .

[32]  M. Bazin Mathematics in microbiology , 1983 .