Hardness of preorder checking for basic formalisms

We investigate the complexity of preorder checking when the specification is a flat finite-state system whereas the implementation is either a non-flat finite-state system or a standard timed automaton. In both cases, we show that simulation checking is Exptime-hard, and for the case of a non-flat implementation, the result holds even if there is no synchronization between the parallel components and their alphabets of actions are pairwise disjoint. Moreover, we show that the considered problems become Pspace-complete when the specification is assumed to be deterministic. Additionally, we establish that comparing a synchronous non-flat system with no hiding and a flat system is Pspace-hard for any relation between trace containment and bisimulation equivalence, even if the flat system is assumed to be fixed.

[1]  Philippe Schnoebelen,et al.  The State Explosion Problem from Trace to Bisimulation Equivalence , 2000, FoSSaCS.

[2]  Alexander Moshe Rabinovich,et al.  Complexity of Equivalence Problems for Concurrent Systems of Finite Agents , 1997, Inf. Comput..

[3]  José L. Balcázar,et al.  Deciding Bisimilarity is P-Complete , 1992, Formal Aspects Comput..

[4]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[5]  Antti Valmari,et al.  Alphabet-Based Synchronisation is Exponentially Cheaper , 2002, CONCUR.

[6]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[7]  Rob J. van Glabbeek,et al.  The Linear Time-Branching Time Spectrum (Extended Abstract) , 1990, CONCUR.

[8]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[9]  Anca Muscholl,et al.  A Lower Bound on Web Services Composition , 2008, Log. Methods Comput. Sci..

[10]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[11]  Petr Jancar,et al.  Hardness of equivalence checking for composed finite-state systems , 2008, Acta Informatica.

[12]  Albert R. Meyer,et al.  Deciding True Concurrency Equivalences on Safe, Finite Nets , 1996, Theor. Comput. Sci..

[13]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[14]  Antonín Kucera,et al.  Equivalence-checking on infinite-state systems: Techniques and results , 2002, Theory and Practice of Logic Programming.

[15]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[16]  Faron Moller,et al.  Verification of Parallel Systems via Decomposition , 1992, CONCUR.

[17]  Sandeep K. Shukla,et al.  On the Complexity of Relational Problems for Finite State Processes (Extended Abstract) , 1996, ICALP.

[18]  David Harel,et al.  On the Complexity of Verifying Concurrent Transition Systems , 1997, CONCUR.

[19]  J. Gabarró,et al.  Deciding bisimilarity isP-complete , 1992, Formal Aspects of Computing.

[20]  Petr Jancar,et al.  Behavioural Equivalences on Finite-State Systems are PTIME-hard , 2005, Comput. Artif. Intell..

[21]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[22]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[23]  Karlis Cerans,et al.  Decidability of Bisimulation Equivalences for Parallel Timer Processes , 1992, CAV.

[24]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[25]  David Harel,et al.  On the Complexity of Verifying Concurrent Transition Systems , 1997, Inf. Comput..

[26]  Robert K. Brayton,et al.  Verifying Abstractions of Timed Systems , 1996, CONCUR.