microRNAs in heart disease: putative novel therapeutic targets?

microRNAs (miRs) are short, approximately 22-nucleotide-long non-coding RNAs involved in the control of gene expression. They guide ribonucleoprotein complexes that effect translational repression or messenger RNA degradation to targeted messenger RNAs. miRs were initially thought to be peculiar to the developmental regulation of the nematode worm, in which they were first described in 1993. Since then, hundreds of different miRs have been reported in diverse organisms, and many have been implicated in the regulation of physiological processes of adult animals. Of importance, misexpression of miRs has been uncovered as a pathogenic mechanism in several diseases. Here, we first outline the biogenesis and mechanism of action of miRs, and then discuss their relevance to heart biology, pathology, and medicine.

[1]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[2]  Sek Won Kong,et al.  Altered microRNA expression in human heart disease. , 2007, Physiological genomics.

[3]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[4]  Danish Sayed,et al.  MicroRNAs Play an Essential Role in the Development of Cardiac Hypertrophy , 2007 .

[5]  Takeshi Kimura,et al.  MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. , 2009, Biochemical and biophysical research communications.

[6]  Stefanie Dimmeler,et al.  MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice , 2009, Science.

[7]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[8]  Danish Sayed,et al.  MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. , 2008, Molecular biology of the cell.

[9]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[10]  Chunxiang Zhang,et al.  MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation , 2009, Circulation research.

[11]  Olivier Voinnet,et al.  Revisiting the principles of microRNA target recognition and mode of action , 2009, Nature Reviews Molecular Cell Biology.

[12]  Ciro Indolfi,et al.  The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease , 2009, Cell Death and Differentiation.

[13]  Piero Carninci,et al.  Multifaceted mammalian transcriptome. , 2008, Current opinion in cell biology.

[14]  Martin J. Simard,et al.  Argonaute proteins: key players in RNA silencing , 2008, Nature Reviews Molecular Cell Biology.

[15]  Yanjie Lu,et al.  A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference , 2009, Nucleic acids research.

[16]  Michael D. Schneider,et al.  Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure , 2008, Proceedings of the National Academy of Sciences.

[17]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[18]  Dmitry Terentyev,et al.  miR-1 Overexpression Enhances Ca2+ Release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B56α and Causing CaMKII-Dependent Hyperphosphorylation of RyR2 , 2009, Circulation research.

[19]  K. Margulies,et al.  Genomics, transcriptional profiling, and heart failure. , 2009, Journal of the American College of Cardiology.

[20]  Y. Matsui,et al.  Epigenetic events in mammalian germ-cell development: reprogramming and beyond , 2008, Nature Reviews Genetics.

[21]  Y. Pinto,et al.  Conditional Dicer Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling , 2008, Circulation.

[22]  Chaoqian Xu,et al.  The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes , 2007, Journal of Cell Science.

[23]  Jianqin Jiao,et al.  miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy , 2009, Proceedings of the National Academy of Sciences.

[24]  Eugene Berezikov,et al.  Cloning and expression of new microRNAs from zebrafish , 2006, Nucleic acids research.

[25]  R. Duisters,et al.  MIRNA-133 AND MIRNA-30 REGULATE CONNECTIVE TISSUE GROWTH FACTOR: IMPLICATIONS FOR A ROLE OF MIRNAS IN MYOCARDIAL MATRIX REMODELING , 2013 .

[26]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[27]  Michael Niepmann,et al.  microRNA-122 stimulates translation of hepatitis C virus RNA , 2008, The EMBO journal.

[28]  T. Golub,et al.  MicroRNA-1 Negatively Regulates Expression of the Hypertrophy-Associated Calmodulin and Mef2a Genes , 2009, Molecular and Cellular Biology.

[29]  John J. Rossi,et al.  Strategies for silencing human disease using RNA interference , 2007, Nature Reviews Genetics.

[30]  Maureen A. Sartor,et al.  MicroRNA-320 Is Involved in the Regulation of Cardiac Ischemia/Reperfusion Injury by Targeting Heat-Shock Protein 20 , 2009, Circulation.

[31]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[32]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[33]  R. D. de Weger,et al.  Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. , 2008, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[34]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[35]  Yanjie Lu,et al.  Retracted: Novel approaches for gene‐specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4 , 2007, Journal of cellular physiology.

[36]  Chunxiang Zhang,et al.  MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. , 2009, Journal of molecular and cellular cardiology.

[37]  Deepak Srivastava,et al.  miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions , 2009, Nature.

[38]  Yan Sun,et al.  MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. , 2009, International heart journal.

[39]  S. Chien,et al.  Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  M. Latronico,et al.  RNA Silencing: Small RNA‐Mediated Posttranscriptional Regulation of mRNA and the Implications for Heart Electropathophysiology , 2009, Journal of cardiovascular electrophysiology.

[41]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[42]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[43]  John McAnally,et al.  MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. , 2009, Genes & development.

[44]  J. Port,et al.  miRNA expression in the failing human heart: functional correlates. , 2008, Journal of molecular and cellular cardiology.

[45]  L. Sieburth,et al.  Widespread Translational Inhibition by Plant miRNAs and siRNAs , 2008, Science.

[46]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[47]  D. Hilfiker-Kleiner,et al.  MiRNA-21: a key to controlling the cardiac fibroblast compartment? , 2009, Cardiovascular research.

[48]  C. Croce,et al.  MicroRNAs in diseases and drug response. , 2008, Current opinion in pharmacology.

[49]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[50]  Xiaoxia Qi,et al.  Gene Expression by a MicroRNA Control of Stress-Dependent Cardiac Growth , 2008 .

[51]  G. Nuovo,et al.  Experimental validation of miRNA targets. , 2008, Methods.

[52]  Scott A Gerber,et al.  Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis , 2008, Proceedings of the National Academy of Sciences.

[53]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[54]  Johanna Schneider,et al.  Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. , 2009, The Journal of clinical investigation.

[55]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[56]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[57]  D. Srivastava,et al.  MicroRNA regulation of cardiovascular development. , 2009, Circulation research.

[58]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[59]  C. Croce,et al.  Unique MicroRNA Profile in End-stage Heart Failure Indicates Alterations in Specific Cardiovascular Signaling Networks* , 2009, The Journal of Biological Chemistry.

[60]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[61]  Jordan S. Pober,et al.  Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells , 2007, Circulation research.

[62]  T. Thum Cardiac dissonance without conductors: how dicer depletion provokes chaos in the heart. , 2008, Circulation.

[63]  G. Dorn,et al.  Phenotyping hypertrophy: eschew obfuscation. , 2003, Circulation research.

[64]  C. Barbato,et al.  Computational Challenges in miRNA Target Predictions: To Be or Not to Be a True Target? , 2009, Journal of biomedicine & biotechnology.

[65]  Jian-Fu Chen,et al.  MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. , 2009, The Journal of clinical investigation.

[66]  P. Sætrom,et al.  MicroRNA-directed transcriptional gene silencing in mammalian cells , 2008, Proceedings of the National Academy of Sciences.

[67]  D. Catalucci,et al.  Reciprocal Regulation of MicroRNA-1 and Insulin-Like Growth Factor-1 Signal Transduction Cascade in Cardiac and Skeletal Muscle in Physiological and Pathological Conditions , 2009, Circulation.

[68]  Thomas Thum,et al.  MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure , 2007 .

[69]  Michael T. McManus,et al.  Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2 , 2007, Cell.

[70]  E. Izaurralde,et al.  The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. , 2009, RNA.

[71]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[72]  Jian-Fu Chen,et al.  Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. , 2007, Journal of molecular and cellular cardiology.

[73]  Zhenyu Xuan,et al.  A biochemical approach to identifying microRNA targets , 2007, Proceedings of the National Academy of Sciences.

[74]  Thomas Thum,et al.  MicroRNAs: novel regulators in cardiac development and disease. , 2008, Cardiovascular research.

[75]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[76]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[77]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[78]  Ru-Fang Yeh,et al.  miR-126 regulates angiogenic signaling and vascular integrity. , 2008, Developmental cell.

[79]  Jeffrey E. Thatcher,et al.  Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis , 2008, Proceedings of the National Academy of Sciences.

[80]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[81]  Derek J Van Booven,et al.  Reciprocal Regulation of Myocardial microRNAs and Messenger RNA in Human Cardiomyopathy and Reversal of the microRNA Signature by Biomechanical Support , 2009, Circulation.

[82]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[83]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[84]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[85]  Thomas Thum,et al.  MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure , 2007, Circulation.

[86]  G. Dorn,et al.  Put your chips on transcriptomics. , 2008, Circulation.

[87]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[88]  Robert Blelloch,et al.  Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. , 2008, Genes & development.

[89]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[90]  E. Olson,et al.  microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. , 2008, Genes & development.

[91]  J. Steitz,et al.  AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2 , 2007, Cell.

[92]  Jennifer Couzin,et al.  MicroRNAs Make Big Impression in Disease After Disease , 2008, Science.

[93]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[94]  E. Olson,et al.  A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure , 2006, Proceedings of the National Academy of Sciences.

[95]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[96]  Chunxiang Zhang,et al.  MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? , 2007, The American journal of pathology.

[97]  Z. Mourelatos,et al.  A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. , 2005, Genes & development.

[98]  Stefano Volinia,et al.  Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[99]  R. Jaenisch,et al.  Loss of Cardiac microRNA-Mediated Regulation Leads to Dilated Cardiomyopathy and Heart Failure , 2009, Circulation research.