Dual band wireless power and bi-directional data link for implanted devices in 65 nm CMOS

Implantable neural recording and stimulation devices hold great promise in monitoring and treatment of neurological disorders, limb reanimation and, development of brain-computer interfaces among other applications. However, transcutaneous wires limit the lifetime of such devices and there is a need for self-contained fully implantable solutions. In this work, we propose a novel dual-frequency approach for simultaneous wireless power transfer and low-power communication for small form factor fully implantable neural devices. We deliver wireless power using efficient magnetically coupled resonators operating at 13.56MHz and communicate using ultra-low power backscatter communication at 915 MHz. We leverage the frequency separation to combine wireless power and communication resonators with minimal interference using a novel concentric design, which meets the stringent size restrictions. We implement the wireless power receiver and communication front end of the implanted device in 65 nm CMOS and demonstrate 25 mW power delivery and 6 Mbps communication link.

[1]  Jan M. Rabaey,et al.  A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 µW Wireless Neural Sensor , 2013, IEEE Journal of Solid-State Circuits.

[2]  Maysam Ghovanloo,et al.  An Integrated Full-Wave CMOS Rectifier With Built-In Back Telemetry for RFID and Implantable Biomedical Applications , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Jan M. Rabaey,et al.  A Minimally Invasive 64-Channel Wireless μECoG Implant , 2015, IEEE Journal of Solid-State Circuits.

[4]  Mohamad Sawan,et al.  High-Speed OQPSK and Efficient Power Transfer Through Inductive Link for Biomedical Implants , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[5]  M. S. Reynolds,et al.  Near field modulated backscatter for in vivo biotelemetry , 2012, 2012 IEEE International Conference on RFID (RFID).

[6]  Reid R. Harrison,et al.  A Battery-Free Multichannel Digital Neural/EMG Telemetry System for Flying Insects , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[7]  Joshua R. Smith,et al.  An experimental technique for design of practical Wireless Power Transfer systems , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[8]  Gianluca Lazzi,et al.  On the Design of Efficient Multi-Coil Telemetry System for Biomedical Implants , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[10]  Chi-Ying Tsui,et al.  Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Maysam Ghovanloo,et al.  Optimization of Data Coils in a Multiband Wireless Link for Neuroprosthetic Implantable Devices , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[12]  Peijun Wang,et al.  Analysis of Dual Band Power and Data Telemetry for Biomedical Implants , 2012, IEEE Transactions on Biomedical Circuits and Systems.