Solution to a Conjecture on the Maximum Skew-Spectral Radius of Odd-Cycle Graphs

Let $G$ be a simple graph with no even cycle, called an odd-cycle graph. Cavers et al. [Linear Algebra Appl. 436(12):4512-1829, 2012] showed that the spectral radius of $G^\sigma$ is the same for every orientation $\sigma$ of $G$, and equals the maximum matching root of $G$. They proposed a conjecture that the graphs which attain the maximum skew spectral radius among the odd-cycle graphs $G$ of order $n$ are isomorphic to the odd-cycle graph with one vertex degree $n-1$ and size $m=\lfloor 3(n-1)/2\rfloor$. By using the Kelmans transformation, we give a proof to the conjecture. Moreover, sharp upper bounds of the maximum matching roots of the odd-cycle graphs with given order $n$ and size $m$ are given and extremal graphs are characterized.

[1]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[2]  Péter Csikvári,et al.  Applications of the Kelmans Transformation: Extremality of the Threshold Graphs , 2011, Electron. J. Comb..

[3]  A. Kelmans On graphs with randomly deleted edges , 1981 .

[4]  Xueliang Li,et al.  Lower bounds of the skew spectral radii and skew energy of oriented graphs , 2014, 1405.4972.

[5]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[6]  Bryan L. Shader,et al.  Skew Spectra of Oriented Graphs , 2009, Electron. J. Comb..

[7]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[8]  I. Gutman,et al.  On the theory of the matching polynomial , 1981, J. Graph Theory.

[9]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[10]  R. Balakrishnan,et al.  Skew spectra of graphs without even cycles , 2014 .

[11]  Péter Csikvári,et al.  On a conjecture of V. Nikiforov , 2009, Discret. Math..

[12]  Willem H. Haemers,et al.  Skew-adjacency matrices of graphs , 2012 .

[13]  Appajosyula Satyanarayana,et al.  A reliability-improving graph transformation with applications to network reliability , 1992, Networks.

[14]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[15]  E. J. Farrell,et al.  An introduction to matching polynomials , 1979, J. Comb. Theory, Ser. B.

[16]  Charles J. Colbourn,et al.  Network transformations and bounding network reliability , 1993, Networks.

[17]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .