Visual Parameter Selection for Spatial Blind Source Separation

Analysis of spatial multivariate data, i.e., measurements at irregularly‐spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non‐expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.

[1]  K. Nordhausen,et al.  Blind source separation for non-stationary random fields , 2021, Spatial Statistics.

[2]  Klaus Nordhausen,et al.  On Cokriging, Neural Networks, and Spatial Blind Source Separation for Multivariate Spatial Prediction , 2020, IEEE Geoscience and Remote Sensing Letters.

[3]  Robert Woodbury,et al.  Interactive Parallel Coordinates for Parametric Design Space Exploration , 2020, CHI Extended Abstracts.

[4]  Mathias Gröbe,et al.  Micro diagrams: visualization of categorical point data from location-based social media , 2020, Cartography and Geographic Information Science.

[5]  Cheryl Z. Qian,et al.  Phoenixmap: An Abstract Approach to Visualize 2D Spatial Distributions , 2019, IEEE Transactions on Visualization and Computer Graphics.

[6]  Robert S. Laramee,et al.  Multivariate Maps - A Glyph-Placement Algorithm to Support Multivariate Geospatial Visualization , 2019, Inf..

[7]  Shi V Liu,et al.  A meta-analysis of selected near-road air pollutants based on concentration decay rates , 2019, Heliyon.

[8]  Han-Wei Shen,et al.  NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation , 2019, IEEE Transactions on Visualization and Computer Graphics.

[9]  James P. Ahrens,et al.  Drag and Track: A Direct Manipulation Interface for Contextualizing Data Instances within a Continuous Parameter Space , 2019, IEEE Transactions on Visualization and Computer Graphics.

[10]  Alex Endert,et al.  A Heuristic Approach to Value-Driven Evaluation of Visualizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[11]  K. Nordhausen,et al.  Spatial blind source separation , 2018, Biometrika.

[12]  Orland Hoeber,et al.  Geo-Coordinated Parallel Coordinates (GCPC): Field trial studies of environmental data analysis , 2018, Vis. Informatics.

[13]  Tovi Grossman,et al.  Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets , 2018, CHI.

[14]  Tomasz Opach,et al.  Augmenting the usability of parallel coordinate plot: The polyline glyphs , 2018, Inf. Vis..

[15]  Andrew Vande Moere,et al.  BinSq: visualizing geographic dot density patterns with gridded maps , 2017 .

[16]  Mengjie Zhou,et al.  Point grid map: a new type of thematic map for statistical data associated with geographic points , 2017 .

[17]  Ebad Banissi,et al.  Multivariate label-based thematic maps , 2017 .

[18]  Bettina Speckmann,et al.  Visual Encoding of Dissimilarity Data via Topology-Preserving Map Deformation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[19]  Sean Gillies,et al.  The GeoJSON Format , 2016, RFC.

[20]  Kenny Gruchalla,et al.  Simulation exploration through immersive parallel planes , 2016, 2016 Workshop on Immersive Analytics (IA).

[21]  Camilla Forsell,et al.  Evaluation of Parallel Coordinates: Overview, Categorization and Guidelines for Future Research , 2016, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jason Dykes,et al.  Visualizing Multiple Variables Across Scale and Geography , 2016, IEEE Transactions on Visualization and Computer Graphics.

[23]  K. Nordhausen,et al.  Blind Source Separation for Spatial Compositional Data , 2015, Mathematical Geosciences.

[24]  Marc G. Genton,et al.  Cross-Covariance Functions for Multivariate Geostatistics , 2015, 1507.08017.

[25]  Martin Charlton,et al.  Enhancements to a geographically weighted principal component analysis in the context of an application to an environmental data set , 2015 .

[26]  Jason Dykes,et al.  Attribute Signatures: Dynamic Visual Summaries for Analyzing Multivariate Geographical Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[27]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[28]  Takeo Igarashi,et al.  Pteromys: interactive design and optimization of free-formed free-flight model airplanes , 2014, ACM Trans. Graph..

[29]  Silvia Miksch,et al.  A matter of time: Applying a data-users-tasks design triangle to visual analytics of time-oriented data , 2014, Comput. Graph..

[30]  David S. Ebert,et al.  Bristle Maps: A Multivariate Abstraction Technique for Geovisualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[31]  A. Stewart Fotheringham,et al.  Principal Component Analysis on Spatial Data: An Overview , 2013 .

[32]  Wojtek J. Krzanowski,et al.  An Overview of Approaches to the Analysis and Modelling of Multivariate Geostatistical Data , 2012, Mathematical Geosciences.

[33]  Eduard Gröller,et al.  World Lines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  Clemens Reimann,et al.  Environmental Geochemical Atlas of the Central Barents Region , 2010 .

[35]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[36]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[37]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[38]  Martin Charlton,et al.  Combining Geovisual Analytics with Spatial Statistics: the Example of Geographically Weighted Regression , 2008 .

[39]  Diansheng Guo,et al.  Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) , 2008, Int. J. Geogr. Inf. Sci..

[40]  T Jombart,et al.  Revealing cryptic spatial patterns in genetic variability by a new multivariate method , 2008, Heredity.

[41]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[42]  Jason Dykes,et al.  Geographically Weighted Visualization: Interactive Graphics for Scale-Varying Exploratory Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[43]  H. Wackernagel Multivariate Geostatistics , 2004 .

[44]  Mark Gahegan,et al.  Introducing geovista studio: an integrated suite of visualization and computational methods for expl , 2002 .

[45]  Kwan-Liu Ma,et al.  A spreadsheet interface for visualization exploration , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[46]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[47]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[48]  Graham J. Wills,et al.  Dynamic Graphics for Exploring Spatial Data with Application to Locating Global and Local Anomalies , 1991 .

[49]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[50]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[51]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[52]  Xiaotong Liu,et al.  Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots , 2017, IEEE Transactions on Visualization and Computer Graphics.

[53]  Silvia Miksch,et al.  Characterizing Guidance in Visual Analytics , 2017, IEEE Transactions on Visualization and Computer Graphics.

[54]  A. Scheib,et al.  CHEMISTRY OF EUROPE’S AGRICULTURAL SOILS – PART A: METHODOLOGY AND INTERPRETATION OF THE GEMAS DATA SET , 2014 .

[55]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[56]  David B. Smith,et al.  Geochemical data for Colorado soils-Results from the 2006 state-scale geochemical survey , 2010 .

[57]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[58]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[59]  Jeffrey S. Torguson,et al.  Cartography , 2019, Dictionary of Geotourism.