An optimization approach for indirect identification of cohesive crack properties

[1]  Alberto Carpinteri,et al.  Fracture mechanics test methods for concrete : report of Technical Committee 89-FMT Fracture Mechanics of Concrete, Test Methods, RILEM (the International Union of Testing and Research Laboratories for Materials and Structures) , 1991 .

[2]  A. Carpinteri Cusp catastrophe interpretation of fracture instability , 1989 .

[3]  Giulio Maier,et al.  Symmetric boundary element method for 'discrete' crack modelling of fracture processes , 1998 .

[4]  Aurelio Muttoni,et al.  Fracture and Damage in Quasibrittle Structures , 1994 .

[5]  Surendra P. Shah,et al.  Fracture Mechanics Test Methods For Concrete , 2004 .

[6]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 3—influence of cutting theP-δ tail , 1992 .

[7]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[8]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 2—Influence of bulk energy dissipation , 1992 .

[9]  Rilem FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[10]  Giulio Maier,et al.  BIFURCATIONS AND INSTABILITIES IN FRACTURE OF COHESIVE-SOFTENING STRUCTURES: A BOUNDARY ELEMENT ANALYSIS† , 1992 .

[11]  Xiaozhi Hu,et al.  Fracture process zone in cementitious materials , 1991 .

[12]  Sara Cattaneo,et al.  Effect of different boundary conditions in direct tensile tests: experimental results , 1999 .

[13]  G. Maier A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes , 1970 .

[14]  Hans W. Reinhardt,et al.  Tensile Tests and Failure Analysis of Concrete , 1986 .

[15]  Victor E. Saouma,et al.  Concrete Fracture Process Zone Characterization with Fiber Optics , 2001 .

[16]  Z. Bažant FRACTURE MECHANICS OF CONCRETE STRUCTURES , 1992 .

[17]  Francis Tin-Loi,et al.  Parameter identification of quasibrittle materials as a mathematical program with equilibrium constraints , 2001 .

[18]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[19]  M. Ferris,et al.  On the solution of a minimum weight elastoplastic problem involving displacement and complementarity constraints , 1999 .

[20]  M. Elices,et al.  A general bilinear fit for the softening curve of concrete , 1994 .

[21]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[22]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[23]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[24]  F. Tin-Loi,et al.  HOLONOMIC SOFTENING: MODELS AND ANALYSIS* , 2001 .

[25]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[26]  P. Petersson Crack growth and development of fracture zones in plain concrete and similar materials , 1981 .

[27]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[28]  Alberto Carpinteri,et al.  Influence of material parameters and geometry on cohesive crack propagation , 1985 .

[29]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[30]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures , 1992 .

[31]  Giulio Maier,et al.  Parameter Identification of the Cohesive Crack Model , 1997 .

[32]  F. Tin-Loi,et al.  Numerical simulations of quasibrittle fracture processes using the discrete cohesive crack model , 2000 .

[33]  C. W. J. Oomens,et al.  Material Identification Using Mixed Numerical Experimental Methods , 1997 .

[34]  F. H. Wittmann,et al.  Fracture toughness and fracture energy of concrete , 1986 .

[35]  Alberto Carpinteri,et al.  Interpretation of the Griffith Instability as a Bifurcation of the Global Equilibrium , 1985 .

[36]  G. Maier,et al.  Parameter identification of a cohesive crack model by Kalman filter , 2002 .

[37]  A. Carpinteri,et al.  Numerical analysis of catastrophic softening behaviour (snap-back instability) , 1989 .

[38]  M. Elices,et al.  Assessment of the tensile strength through size effect curves , 2000 .

[39]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[40]  Giulio Maier,et al.  Some aspects of quasi-brittle fracture analysis as a linear complementarity problem , 1994 .