Application of Topological Data Analysis to Delirium Detection

We propose a new scoring algorithm for detecting delirium from one-channel EEG, based on Topological Data Analysis. Numerical experiments demonstrated that our method achieved higher predictive performance than the other existing methods.

[1]  Mariette Yvinec,et al.  Geometric and Topological Inference , 2018 .

[2]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[3]  K. Zarei,et al.  Delirium detection by a novel bispectral electroencephalography device in general hospital , 2018, Psychiatry and clinical neurosciences.

[4]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[5]  Reza Boostani,et al.  Entropy and complexity measures for EEG signal classification of schizophrenic and control participants , 2009, Artif. Intell. Medicine.

[6]  Yuhei Umeda,et al.  Time Series Classification via Topological Data Analysis , 2017, Inf. Media Technol..

[7]  S. Inouye,et al.  Delirium in older persons. , 2006, New England Journal of Medicine.

[8]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[9]  Karthikeyan Natesan Ramamurthy,et al.  Persistent homology of attractors for action recognition , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[10]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[11]  G. Bernard,et al.  Current opinions regarding the importance, diagnosis, and management of delirium in the intensive care unit: A survey of 912 healthcare professionals* , 2004, Critical care medicine.

[12]  Frans S. Leijten,et al.  Delirium detection using relative delta power based on 1‐minute single‐channel EEG: a multicentre study , 2019, British journal of anaesthesia.

[13]  Matthew Berger,et al.  On Time-Series Topological Data Analysis: New Data and Opportunities , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).