Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials

[1]  Horacio D Espinosa,et al.  Dimensional analysis and parametric studies for designing artificial nacre. , 2011, Journal of the mechanical behavior of biomedical materials.

[2]  John D. Currey,et al.  The mechanical behaviour of some molluscan hard tissues , 2009 .

[3]  Alberto Redaelli,et al.  Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. , 2009, Journal of the mechanical behavior of biomedical materials.

[4]  Markus J. Buehler,et al.  ROBUSTNESS-STRENGTH PERFORMANCE OF HIERARCHICAL ALPHA-HELICAL PROTEIN FILAMENTS , 2009 .

[5]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[6]  Markus J Buehler,et al.  Alpha-helical protein domains unify strength and robustness through hierarchical nanostructures , 2009, Nanotechnology.

[7]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[8]  Markus J. Buehler,et al.  Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .

[9]  Yasuaki Seki,et al.  Structural biological materials: Overview of current research , 2008 .

[10]  Mark A. Locascio,et al.  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. , 2008, Nature nanotechnology.

[11]  Markus J. Buehler,et al.  Atomistic Modeling of Materials Failure , 2008 .

[12]  Markus J. Buehler,et al.  Elasticity, strength and resilience: A comparative study on mechanical signatures of α-Helix, β-sheet and tropocollagen domains , 2008 .

[13]  Markus J. Buehler,et al.  Hierarchical Coexistence of Universality and Diversity Controls Robustness and Multi-Functionality in Protein Materials , 2008 .

[14]  J. W. Foulk,et al.  On the toughening of brittle materials by grain bridging: promoting intergranular fracture through grain angle, strength, and toughness , 2008 .

[15]  M. Buehler,et al.  Crystal size controlled deformation mechanism: Breakdown of dislocation mediated plasticity in single nanocrystals under geometric confinement , 2008 .

[16]  K. Katti,et al.  Mechanical response and multilevel structure of biomimetic hydroxyapatite/polygalacturonic/chitosan nanocomposites , 2008 .

[17]  Huajian Gao,et al.  The strength limit in a bio-inspired metallic nanocomposite , 2008 .

[18]  Christine Ortiz,et al.  Bioinspired Structural Materials , 2008, Science.

[19]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[20]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[21]  Markus J Buehler,et al.  Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. , 2008, Nano letters.

[22]  M. Meyers,et al.  The growth of nacre in the abalone shell. , 2008, Acta biomaterialia.

[23]  M. Buehler Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. , 2008, Journal of the mechanical behavior of biomedical materials.

[24]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[25]  H. Espinosa,et al.  Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization , 2007, Journal of Microelectromechanical Systems.

[26]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[27]  Markus J. Buehler,et al.  Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization , 2007 .

[28]  Horacio Dante Espinosa,et al.  An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre , 2007 .

[29]  Markus J Buehler,et al.  Entropic elasticity controls nanomechanics of single tropocollagen molecules. , 2007, Biophysical journal.

[30]  N. Kotov,et al.  Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High‐Strength Nanocomposite by Layer‐by‐Layer Assembly of Clay and L‐3,4‐Dihydroxyphenylalanine Polymer , 2007 .

[31]  F. Shi,et al.  Artificial Nacre by Alternating Preparation of Layer-by-Layer Polymer Films and CaCO3 Strata , 2007 .

[32]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[33]  Franck J. Vernerey,et al.  An interactive micro-void shear localization mechanism in high strength steels , 2007 .

[34]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[35]  Klaus Schulten,et al.  Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. , 2006, Biophysical journal.

[36]  Franz-Josef Ulm,et al.  Nanogranular origins of the strength of bone. , 2006, Nano letters.

[37]  Xiaodong Li,et al.  In situ observation of nanograin rotation and deformation in nacre. , 2006, Nano letters.

[38]  G. Mayer,et al.  New classes of tough composite materials—Lessons from natural rigid biological systems , 2006 .

[39]  Chwee Teck Lim,et al.  Experimental techniques for single cell and single molecule biomechanics , 2006 .

[40]  K. Vecchio,et al.  Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study , 2006 .

[41]  Markus J. Buehler,et al.  Nature designs tough collagen: Explaining the nanostructure of collagen fibrils , 2006, Proceedings of the National Academy of Sciences.

[42]  Horacio Dante Espinosa,et al.  Mechanical properties of nacre constituents and their impact on mechanical performance , 2006 .

[43]  Wenjian Wu,et al.  Evaporation-induced self-assembly of organic–inorganic ordered nanocomposite thin films that mimic nacre , 2006 .

[44]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[45]  Yasuaki Seki,et al.  Structural biological composites: An overview , 2006 .

[46]  Carol K Hall,et al.  Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations. , 2006, Journal of the American Chemical Society.

[47]  Georg Schitter,et al.  Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. , 2006, Biophysical journal.

[48]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[49]  H. Kahn,et al.  Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils , 2006, Journal of The Royal Society Interface.

[50]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[51]  H. Kahn,et al.  Bioinspired micro-composite structure , 2005 .

[52]  Xavier Bourrat,et al.  Multiscale structure of sheet nacre. , 2005, Biomaterials.

[53]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  T. Belytschko,et al.  Biological Structures Mitigate Catastrophic Fracture Through Various Strategies , 2005 .

[55]  Robert M. Panas,et al.  Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus , 2005 .

[56]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[57]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[58]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[59]  Marc A. Meyers,et al.  Growth and structure in abalone shell , 2005 .

[60]  R O Ritchie,et al.  Mechanistic aspects of fracture and R-curve behavior in human cortical bone. , 2005, Biomaterials.

[61]  C. Hall,et al.  Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Kai-Nan An,et al.  Stretching type II collagen with optical tweezers. , 2004, Journal of biomechanics.

[63]  Baohua Ji,et al.  Mechanical properties of nanostructure of biological materials , 2004 .

[64]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[65]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[66]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[67]  A. Heuer,et al.  Tissue Regeneration in the Shell of the Giant Queen Conch, Strombus gigas , 2004 .

[68]  F. Barthelat,et al.  Mechanical properties of nacre constituents: An inverse method approach , 2004 .

[69]  R O Ritchie,et al.  Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. , 2003, Biomaterials.

[70]  Y. Bai,et al.  Effects of nanostructures on the fracture strength of the interfaces in nacre , 2003 .

[71]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[72]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  H. Espinosa,et al.  An examination of the competition between bulk behavior and interfacial behavior of ceramics subjected to dynamic pressure-shear loading , 2003 .

[74]  Horacio Dante Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples , 2003 .

[75]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[76]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[77]  S. Suresha,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[78]  S. B L A N K,et al.  The nacre protein perlucin nucleates growth of calcium carbonate crystals , 2003 .

[79]  Rajiv K. Kalia,et al.  ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations , 2002 .

[80]  A. Belcher,et al.  Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone flat pearls , 2002 .

[81]  X. Zhang,et al.  Microstructure in a biointerface , 2002 .

[82]  Martin Raff,et al.  Cell Biology of Infection , 2002 .

[83]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[84]  Zhigang Suo,et al.  Model for the robust mechanical behavior of nacre , 2001 .

[85]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[86]  S. Kotha,et al.  Micromechanical model of nacre tested in tension , 2001 .

[87]  K. Katti,et al.  Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques Part I Elastic properties , 2001 .

[88]  Takashi Kato Polymer/Calcium Carbonate Layered Thin‐Film Composites , 2000 .

[89]  F. Cui,et al.  Crystal orientation, toughening mechanisms and a mimic of nacre , 2000 .

[90]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[91]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[92]  J. Currey The design of mineralised hard tissues for their mechanical functions. , 1999, The Journal of experimental biology.

[93]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[94]  PRIYA VASHISHTA,et al.  Large-scale atomistic simulations of dynamic fracture , 1989, Comput. Sci. Eng..

[95]  Guy Riddihough,et al.  Structure of collagen , 1998, Nature Structural Biology.

[96]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[97]  A. Yee,et al.  Development of a process zone in rubber-modified epoxy polymers , 1998 .

[98]  C. Brinker,et al.  Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre , 1998, Nature.

[99]  Li Wei,et al.  Simulation of nacre with tin/pt multilayers and a study of their hardness , 1997 .

[100]  I. Bahar,et al.  Gaussian Dynamics of Folded Proteins , 1997 .

[101]  Paul K. Hansma,et al.  Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges , 1997 .

[102]  R. Jernigan,et al.  Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. , 1997, Journal of molecular biology.

[103]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[104]  Michael F. Ashby,et al.  The mechanical properties of natural materials. I. Material property charts , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[105]  I. Aksay,et al.  Biomimetics. Design and Processing of Materials. , 1995 .

[106]  N Go,et al.  Collective variable description of native protein dynamics. , 1995, Annual review of physical chemistry.

[107]  P. Hansma,et al.  Atomic force microscopy of the nacreous layer in mollusc shells , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[108]  P. C. Rieke,et al.  Innovative materials processing strategies: a biomimetic approach. , 1992, Science.

[109]  K. Kendall,et al.  A simple way to make tough ceramics , 1990, Nature.

[110]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[111]  P. Hansma,et al.  Atomic force microscopy , 1990, Nature.

[112]  Anthony G. Evans,et al.  Effects of non-planarity on the mixed mode fracture resistance of bimaterial interfaces , 1989 .

[113]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[114]  A. Evans,et al.  Mechanisms of toughening in rubber toughened polymers , 1986 .

[115]  John W. Hutchinson,et al.  Continuum theory of dilatant transformation toughening in ceramics , 1983 .

[116]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.